Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Euler equations (fluid dynamics)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Conservation form=== {{See also|Conservation equation|}} The conservation form emphasizes the mathematical properties of Euler equations, and especially the contracted form is often the most convenient one for [[computational fluid dynamics]] simulations. Computationally, there are some advantages in using the conserved variables. This gives rise to a large class of numerical methods called conservative methods.{{sfn|Toro|1999|p= 24}} The '''free Euler equations are conservative''', in the sense they are equivalent to a conservation equation: <math display="block"> \frac{\partial \mathbf y}{\partial t}+ \nabla \cdot \mathbf F ={\mathbf 0}, </math> or simply in Einstein notation: <math display="block"> \frac{\partial y_j}{\partial t}+ \frac{\partial f_{ij}}{\partial r_i}= 0_i, </math> where the conservation quantity <math>\mathbf y</math> in this case is a vector, and <math>\mathbf F</math> is a [[flux]] matrix. This can be simply proved. {{hidden |Demonstration of the conservation form |First, the following identities hold: <math display="block">\nabla \cdot (w \mathbf I) = \mathbf I \cdot \nabla w + w \nabla \cdot \mathbf I = \nabla w </math> <math display="block">\mathbf u \cdot \nabla \cdot \mathbf u = \nabla \cdot (\mathbf u \otimes \mathbf u)</math> where <math>\otimes</math> denotes the [[outer product]]. The same identities expressed in [[Einstein notation]] are: <math display="block">\partial_i\left(w \delta_{ij}\right) = \delta_{ij} \partial_i w + w \partial_i \delta_{ij} = \delta_{ij} \partial_i w = \partial_j w</math> <math display="block">u_j \partial_i u_i = \partial_i \left(u_i u_j\right)</math> where {{mvar|I}} is the [[identity matrix]] with dimension {{mvar|N}} and {{mvar|Ξ΄<sub>ij</sub>}} its general element, the Kroenecker delta. Thanks to these vector identities, the incompressible Euler equations with constant and uniform density and without external field can be put in the so-called ''conservation'' (or Eulerian) differential form, with vector notation: <math display="block">\left\{\begin{align} {\partial\mathbf{u} \over \partial t} + \nabla \cdot \left(\mathbf{u} \otimes \mathbf{u} + w\mathbf{I}\right) &= \mathbf{0} \\ {\partial 0 \over \partial t} + \nabla \cdot \mathbf{u} &= 0, \end{align}\right.</math> or with Einstein notation: <math display="block">\left\{\begin{align} \partial_t u_j + \partial_i \left(u_i u_j + w \delta_{ij}\right) &= 0 \\ \partial_t 0 + \partial_j u_j &= 0, \end{align}\right.</math> Then '''incompressible''' Euler equations with uniform density have conservation variables: <math display="block"> \mathbf y = \begin{pmatrix}\mathbf u \\ 0 \end{pmatrix}; \qquad \mathbf F = \begin{pmatrix}\mathbf u \otimes \mathbf u + w \mathbf I \\ \mathbf u \end{pmatrix}. </math> Note that in the second component u is by itself a vector, with length N, so y has length N+1 and F has size N(N+1). In 3D for example y has length 4, I has size 3Γ3 and F has size 4Γ3, so the explicit forms are: <math display="block"> {\mathbf y}=\begin{pmatrix} u_1 \\ u_2 \\ u_3 \\0 \end{pmatrix}; \quad {\mathbf F}=\begin{pmatrix} u_1^2 + w & u_1u_2 & u_1u_3 \\ u_2 u_1 & u_2^2 + w & u_2 u_3 \\ u_3 u_1 & u_3 u_2 & u_3^2 + w \\ u_1 & u_2 & u_3 \end{pmatrix}. </math> |style = border: 1px solid lightgray; width: 90%; |headerstyle = text-align:left; }} At last Euler equations can be recast into the particular equation: {{Equation box 1 |indent=: |title='''Incompressible Euler equation(s) with constant and uniform density'''<br/>(''conservation or Eulerian form'') |equation=<math> \frac {\partial}{\partial t}\begin{pmatrix} \mathbf u \\ 0 \end{pmatrix} + \nabla \cdot \begin{pmatrix}\mathbf u \otimes \mathbf u + w \mathbf I \\ \mathbf u \end{pmatrix} = \begin{pmatrix}\mathbf g \\ 0\end{pmatrix} </math> |cellpadding |border |border colour = #0073CF |background colour=#F5FFFA }}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)