Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Expectation–maximization algorithm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== The EM algorithm === The EM algorithm seeks to find the maximum likelihood estimate of the marginal likelihood by iteratively applying these two steps: :''Expectation step (E step)'': Define <math>Q(\boldsymbol\theta\mid\boldsymbol\theta^{(t)})</math> as the [[expected value]] of the log [[likelihood function]] of <math>\boldsymbol\theta</math>, with respect to the current [[conditional probability distribution|conditional distribution]] of <math>\mathbf{Z}</math> given <math>\mathbf{X}</math> and the current estimates of the parameters <math>\boldsymbol\theta^{(t)}</math>: ::<math>Q(\boldsymbol\theta\mid\boldsymbol\theta^{(t)}) = \operatorname{E}_{\mathbf{Z} \sim p(\cdot | \mathbf{X},\boldsymbol\theta^{(t)})}\left[ \log p (\mathbf{X},\mathbf{Z} | \boldsymbol\theta) \right] \,</math> :''Maximization step (M step)'': Find the parameters that maximize this quantity: ::<math>\boldsymbol\theta^{(t+1)} = \underset{\boldsymbol\theta}{\operatorname{arg\,max}} \ Q(\boldsymbol\theta\mid\boldsymbol\theta^{(t)}) \, </math> More succinctly, we can write it as one equation:<math display="block">\boldsymbol\theta^{(t+1)} = \underset{\boldsymbol\theta}{\operatorname{arg\,max}} \operatorname{E}_{\mathbf{Z} \sim p(\cdot | \mathbf{X},\boldsymbol\theta^{(t)})}\left[ \log p (\mathbf{X},\mathbf{Z} | \boldsymbol\theta) \right] \, </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)