Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Extended real number line
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Arithmetic operations== The arithmetic operations of <math>\R</math> can be partially extended to <math>\overline\R</math> as follows:<ref name=":0">{{Cite web|url=http://mathworld.wolfram.com/AffinelyExtendedRealNumbers.html|title=Affinely Extended Real Numbers|last=Weisstein|first=Eric W.|website=mathworld.wolfram.com|language=en|access-date=2019-12-03}}</ref> :<math display="block">\begin{align}a\pm\infty=\pm\infty+a&=\pm\infty,&a&\neq\mp\infty\\a\cdot(\pm\infty)=\pm\infty\cdot a&=\pm\infty,&a&\in(0,+\infty]\\a\cdot(\pm\infty)=\pm\infty\cdot a&=\mp\infty,&a&\in[-\infty,0)\\\frac{a}{\pm\infty}&=0,&a&\in\mathbb{R}\\\frac{\pm\infty}{a}&=\pm\infty,&a&\in(0,+\infty)\\\frac{\pm\infty}{a}&=\mp\infty,&a&\in(-\infty,0)\end{align}</math> For exponentiation, see {{Section link|Exponentiation|Limits of powers}}. Here, <math>a+\infty</math> means both <math>a+(+\infty)</math> and <math>a-(-\infty)</math>, while <math>a-\infty</math> means both <math>a-(+\infty)</math> and <math>a+(-\infty)</math>. The expressions <math>\infty-\infty</math>, <math>0\times(\pm\infty)</math>, and <math>\pm\infty/\pm\infty</math> (called [[indeterminate form]]s) are usually left [[Defined and undefined|undefined]]. These rules are modeled on the laws for [[Limit_of_a_function#Limits_involving_infinity|infinite limits]]. However, in the context of [[probability theory|probability]] or measure theory, <math>0\times\pm\infty</math> is often defined as 0.<ref name=":2" /> When dealing with both positive and negative extended real numbers, the expression <math>1/0</math> is usually left undefined, because, although it is true that for every real nonzero sequence <math>f</math> that [[limit of a sequence|converges]] to 0, the [[multiplicative inverse|reciprocal]] sequence <math>1/f</math> is eventually contained in every neighborhood of <math>\{\infty,-\infty\}</math>, it is ''not'' true that the sequence <math>1/f</math> must itself converge to either <math>-\infty</math> or <math>\infty.</math> Said another way, if a [[continuous function]] <math>f</math> achieves a zero at a certain value <math>x_0,</math> then it need not be the case that <math>1/f</math> tends to either <math>-\infty</math> or <math>\infty</math> in the limit as <math>x</math> tends to <math>x_0</math>. This is the case for the limits of the [[identity function]] <math>f(x)=x</math> when <math>x</math> tends to 0, and of <math>f(x)=x^2\sin\left(1/x\right)</math> (for the latter function, neither <math>-\infty</math> nor <math>\infty</math> is a limit of <math>1/f(x)</math>, even if only positive values of <math>x</math> are considered). However, in contexts where only non-negative values are considered, it is often convenient to define <math>1/0=+\infty</math>. For example, when working with [[power series]], the [[radius of convergence]] of a power series with [[coefficient]]s <math>a_n</math> is often defined as the reciprocal of the [[limit inferior and limit superior|limit-supremum]] of the sequence <math>\left(|a_n|^{1/n}\right)</math>. Thus, if one allows <math>1/0</math> to take the value <math>+\infty</math>, then one can use this formula regardless of whether the limit-supremum is 0 or not.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)