Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Farey sequence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Sequence length and index of a fraction=== The Farey sequence of order {{mvar|n}} contains all of the members of the Farey sequences of lower orders. In particular {{mvar|F<sub>n</sub>}} contains all of the members of {{math|''F''<sub>''n''−1</sub>}} and also contains an additional fraction for each number that is less than {{mvar|n}} and [[coprime]] to {{mvar|n}}. Thus {{math|''F''<sub>6</sub>}} consists of {{math|''F''<sub>5</sub>}} together with the fractions {{sfrac|1|6}} and {{sfrac|5|6}}. The middle term of a Farey sequence {{mvar|F<sub>n</sub>}} is always {{sfrac|1|2}}, for {{math|''n'' > 1}}. From this, we can relate the lengths of {{mvar|F<sub>n</sub>}} and {{math|''F''<sub>''n''−1</sub>}} using [[Euler's totient function]] {{math|''φ''(''n'')}}: <math display=block>|F_n| = |F_{n-1}| + \varphi(n).</math> Using the fact that {{math|1={{abs|''F''<sub>1</sub>}} = 2}}, we can derive an expression for the length of {{mvar|F<sub>n</sub>}}:<ref>{{Cite OEIS|A005728}}</ref> <math display=block>|F_n| = 1 + \sum_{m=1}^n \varphi(m) = 1 + \Phi(n),</math> where {{math|Φ(''n'')}} is the [[Totient summatory function|summatory totient]]. We also have : <math display=block>|F_n| = \frac{1}{2}\left(3+\sum_{d=1}^n \mu(d) \left\lfloor \tfrac{n}{d} \right\rfloor^2 \right),</math> and by a [[Möbius inversion formula]] : <math display=block>|F_n| = \frac{1}{2} (n+3)n - \sum_{d=2}^n|F_{\lfloor n/d \rfloor}|,</math> where {{math|''μ''(''d'')}} is the number-theoretic [[Möbius function]], and <math>\lfloor n/d \rfloor </math> is the [[Floor and ceiling functions|floor function]]. The asymptotic behaviour of {{math|{{abs|''F<sub>n</sub>''}}}} is : <math display=block>|F_n| \sim \frac {3n^2}{\pi^2}.</math> The number of Farey fractions with denominators equal to {{mvar|k}} in {{mvar|F<sub>n</sub>}} is given by {{math|''φ''(''k'')}} when {{math|''k'' ≤ ''n''}} and zero otherwise. Concerning the numerators one can define the function <math>\mathcal{N}_n(h)</math> that returns the number of Farey fractions with numerators equal to {{mvar|h}} in {{mvar|F<sub>n</sub>}}. This function has some interesting properties as<ref name=Tomas2024>{{cite journal |last=Tomas Garcia |first=Rogelio |url=https://math.colgate.edu/~integers/y63/y63.pdf|title=Farey Fractions with Equal Numerators and the Rank of Unit Fractions | journal=Integers | date=July 2024 |volume=24 <!-- |access-date=13 July 2024 --> |doi=10.5281/zenodo.12685697 |arxiv=2404.08283 }}</ref> :<math>\mathcal{N}_n(1)=n</math>, :<math>\mathcal{N}_n(p^m)=\left\lceil(n-p^m) \left(1- 1/p \right)\right\rceil</math> for any prime number <math>p</math>, :<math>\mathcal{N}_{n+mh}(h)=\mathcal{N}_{n}(h) + m\varphi(h)</math> for any integer {{math|''m'' ≥ 0}}, :<math>\mathcal{N}_{n}(4h)=\mathcal{N}_{n}(2h) - \varphi(2h).</math> In particular, the property in the third line above implies <math>\mathcal{N}_{mh}(h)=(m-1)\varphi(h)</math> and, further, <math>\mathcal{N}_{2h}(h)=\varphi(h).</math> The latter means that, for Farey sequences of even order {{mvar|n}}, the number of fractions with numerators equal to {{math|{{sfrac|n|2}}}} is the same as the number of fractions with denominators equal to {{math|{{sfrac|n|2}}}}, that is <math>\mathcal{N}_{n}(n/2) = \varphi(n/2)</math>. The index <math>I_n(a_{k,n}) = k</math> of a fraction <math>a_{k,n}</math> in the Farey sequence <math>F_n=\{a_{k,n} : k = 0, 1, \ldots, m_n\}</math> is simply the position that <math>a_{k,n}</math> occupies in the sequence. This is of special relevance as it is used in an alternative formulation of the [[Riemann hypothesis]], see [[#Riemann hypothesis|below]]. Various useful properties follow: <math display=block>\begin{align} I_n(0/1) &= 0, \\[6pt] I_n(1/n) &= 1, \\[2pt] I_n(1/2) &= \frac{|F_n|-1}{2}, \\[2pt] I_n(1/1) &= |F_n|-1 , \\[2pt] I_n(h/k) &= |F_n|-1 - I_n\left(\frac{k-h}{k}\right). \end{align}</math> The index of {{math|{{sfrac|1|''k''}}}} where {{math|{{sfrac|n|''i''+1}} < ''k'' ≤ {{sfrac|''n''|''i''}}}} and {{mvar|n}} is the [[least common multiple]] of the first {{mvar|i}} numbers, {{math|1=''n'' = lcm([2, ''i''])}}, is given by:<ref name=Tomas2018>{{cite journal |last=Tomas |first=Rogelio |url=https://cs.uwaterloo.ca/journals/JIS/VOL25/Tomas/tomas5.pdf|title=Partial Franel sums | journal=Journal of Integer Sequences | date=January 2022 |volume=25 |issue=1 <!-- |access-date=16 January 2022 --> }}</ref> <math display=block>I_n(1/k) = 1 + n \sum_{j=1}^{i} \frac{\varphi(j)}{j} - k\Phi(i).</math> A similar expression was used as an approximation of <math>I_n(x)</math> for low values of <math>x</math> in the classical paper by F. Dress.<ref name=Dress1999>{{cite journal |last=Dress |first=F. |url=http://archive.numdam.org/article/JTNB_1999__11_2_345_0.pdf|title=Discrépance des suites de Farey| journal= J. Théorie des Nr. Bordx.| date=1999 |volume=11 <!-- |access-date=11 January 2025 --> }}</ref> A general expression for <math>I_n(h/k)</math> for any Farey fraction <math>h/k</math> is given in.<ref name=Tomas2025>{{cite journal |last=Tomas Garcia |first=Rogelio |url=https://www.mdpi.com/2227-7390/13/1/140|title=New Analytical Formulas for the Rank of Farey Fractions and Estimates of the Local Discrepancy| journal=Mathematics| date=2025 |volume=13 |issue=1 |page=140 |doi=10.3390/math13010140 <!-- |access-date=11 January 2025 --> |doi-access=free }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)