Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Finite field
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Field with four elements === The smallest non-prime field is the field with four elements, which is commonly denoted <math>\mathrm{GF}(4)</math> or <math>\mathbb{F}_4.</math> It consists of the four elements <math>0, 1, \alpha, 1 + \alpha</math> such that <math>\alpha^2=1+\alpha</math>, <math>1 \cdot \alpha = \alpha \cdot 1 = \alpha</math>, <math>x+x=0</math>, and <math>x \cdot 0 = 0 \cdot x = 0</math>, for every <math>x \in \mathrm{GF}(4)</math>, the other operation results being easily deduced from the [[distributive law]]. See below for the complete operation tables. This may be deduced as follows from the results of the preceding section. Over <math>\mathrm{GF}(2)</math>, there is only one [[irreducible polynomial]] of degree <math>2</math>: <math display="block">X^2+X+1</math> Therefore, for <math>\mathrm{GF}(4)</math> the construction of the preceding section must involve this polynomial, and <math display="block">\mathrm{GF}(4) = \mathrm{GF}(2)[X]/(X^2+X+1).</math> Let <math>\alpha</math> denote a root of this polynomial in <math>\mathrm{GF}(4)</math>. This implies that <math display="block">\alpha^2 = 1 + \alpha,</math> and that <math>\alpha</math> and <math>1+\alpha</math> are the elements of <math>\mathrm{GF}(4)</math> that are not in <math>\mathrm{GF}(2)</math>. The tables of the operations in <math>\mathrm{GF}(4)</math> result from this, and are as follows: {| style="border-spacing:1.7em 0" | {| class="wikitable" |+ Addition <math>x + y</math> |- ! style="width:24%;" {{diagonal split header|{{math|''x''}}|{{math|''y''}}}} !! style="width:20%;"| {{math|0}} !! style="width:20%;"| {{math|1}} !! style="width:20%;"| {{math|''α''}} !! style="width:20%;"| {{math|1 + ''α''}} |- !style="text-align:left"| {{math|0}} | {{math|0}} | {{math|1}} | {{math|''α''}} | {{math|1 + ''α''}} |- !style="text-align:left"| {{math|1}} | {{math|1}} | {{math|0}} | {{math|1 + ''α''}} | {{math|''α''}} |- !style="text-align:left"| {{math|''α''}} || {{math|''α''}} | {{math|1 + ''α''}} | {{math|0}} | {{math|1}} |- !style="text-align:left"| {{math|1 + ''α''}} | {{math|1 + ''α''}} | {{math|''α''}} | {{math|1}} | {{math|0}} |} | {| class="wikitable" |+ Multiplication <math>x \cdot y</math> |- ! style="width:28%;" {{diagonal split header|{{math|''x''}}|{{math|''y''}}}} !! style="width:12%;"| {{math|0}} !! style="width:20%;"| {{math|1}} !! style="width:20%;"| {{math|''α''}} !! style="width:20%;"| {{math|1 + ''α''}} |- !style="text-align:left"| {{math|0}} | {{math|0}} | {{math|0}} || {{math|0}} || {{math|0}} |- !style="text-align:left"| {{math|1}} | {{math|0}} | {{math|1}} || {{math|''α''}} || {{math|1 + ''α''}} |- !style="text-align:left"| {{math|''α''}} || {{math|0}} || {{math|''α''}} || {{math|1 + ''α''}} || {{math|1}} |- !style="text-align:left"| {{math|1 + ''α''}} || {{math|0}} || {{math|1 + ''α''}} || {{math|1}} || {{math|''α''}} |} | {| class="wikitable" |+ Division <math>x \div y</math> |- ! style="width:24%;" {{diagonal split header|{{math|''x''}}|{{math|''y''}}}} !! style="width:20%;"| {{math|1}} !! style="width:20%;"| {{math|''α''}} !! style="width:20%;"| {{math|1 + ''α''}} |- !style="text-align:left"| {{math|0}} | {{math|0}} || {{math|0}} || {{math|0}} |- !style="text-align:left"| {{math|1}} | {{math|1}} || {{math|1 + ''α''}} || {{math|''α''}} |- !style="text-align:left"| {{math|''α''}} || {{math|''α''}} || {{math|1}} || {{math|1 + ''α''}} |- !style="text-align:left"| {{math|1 + ''α''}} || {{math|1 + ''α''}} || {{math|''α''}} || {{math|1}} |} |} A table for subtraction is not given, because subtraction is identical to addition, as is the case for every field of characteristic 2. In the third table, for the division of <math>x</math> by <math>y</math>, the values of <math>x</math> must be read in the left column, and the values of <math>y</math> in the top row. (Because <math>0 \cdot z = 0</math> for every <math>z</math> in every [[Ring (mathematics)|ring]] the [[division by 0]] has to remain undefined.) From the tables, it can be seen that the additive structure of <math>\mathrm{GF}(4)</math> is isomorphic to the [[Klein four-group]], while the non-zero multiplicative structure is isomorphic to the group <math>Z_3</math>. The map <math display="block"> \varphi:x \mapsto x^2</math> is the non-trivial field automorphism, called the [[#Frobenius automorphism and Galois theory|Frobenius automorphism]], which sends <math>\alpha</math> into the second root <math>1+\alpha</math> of the above-mentioned irreducible polynomial <math>X^2+X+1</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)