Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ford Power Stroke engine
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Key specifications=== * Fuel injection system: Split-shot HEUI (hydraulically actuated electronically controlled unit injectors) * Valve train: OHV 4-valves per cylinder, 32 valves total (16 intake valves, 16 exhaust valves) * Turbo configuration: Single; variable vane geometry (VGT) ====Common issues==== * ''{{vanchor |Oil Cooler}}/{{vanchor |EGR Cooler}}'' – The sources of the main issues with the 6.0L were the in-block oil cooler, and the EGR cooler materials. The oil cooler is located in the valley of the engine block, underneath the cartridge oil filter set up. The sealed outer portion of the oil cooler is submerged in engine oil, with coolant flowing through the center passages. Over time, the coolant side of oil cooler would plug up with sediment. This would reduce the flow of coolant through the oil cooler and cause higher oil temperatures. This sediment would also reduce the flow of coolant through the EGR cooler resulting in premature failure due to thermal expansion fatiguing the heat exchanging core. The early EGR coolers (2003-2004.5) were also susceptible to premature failure. ''{{vanchor |High Pressure Oil System}}'' – With the use of split-shot HEUI fuel injectors, high-pressure oil is required to pressurize the fuel injectors. The main high-pressure oil (HPO) system components are the high-pressure oil pump (HPOP), HPO manifolds, stand pipes, and branch tube. The HPOP is located in the engine valley at the rear of the engine block. Early build years (2003.5–04.5) are well known for premature HPOP failure. This is due to the poor quality materials used in manufacturing. The HPOP is pressurized by a rotating gear, meshed with a rear camshaft gear. The early model HPOP gears were known to be weak, and develop stress cracks in the teeth resulting in gear failure, thus causing a no start issue for the engine. Early models also had the ICP sensor located on the HPOP cover. The high amount of heat in this location, combined with the exposure to debris in the oil was known to cause ICP sensor failure also resulting in a no-start condition. This issue was addressed by Ford with the late-2004 engine update, bringing a new HPOP design, along with relocation of the ICP sensor to the passenger-side valve cover. The newly designed pump is not known for frequent failure, however a new issue arose with the update. In the late model engines, Ford also redesigned the HPO stand pipes and dummy plugs in the HPO manifold, using poor-quality O-rings. These O-rings were prone to failure causing a HPO leak, and eventually a no-start condition. Ford addressed this concern with updated Viton O-ring washers fixing the issue. With the new HPO system design also came a snap-to-connect (STC) fitting. Some models had the issue of the STC fitting's prongs breaking, causing the fitting to lose its sealing property and again, a no-start condition for the engine. Another frequent (but not always catastrophic) issue with the HPO system is the injection pressure regulator (IPR) screen. The IPR screen is located in the engine valley with the oil cooler. The material used was susceptible to failure and neglecting to replace the screen during an oil cooler replacement could lead to the debris being sent through the HPOP causing complete failure. If the HPOP does not fail, another common failure point is the IPR that, if contaminated by debris, will not be able to seal completely and will then "bleed off" oil pressure causing a no-start condition. ''{{vanchor |Head Gaskets}}'' – Ford/International used four Torque to Yield (TTY) cylinder head bolts per cylinder for the 6.0 and 6.4. TTY bolts offer some of the most precise clamping force available but can be problematic. In certain situations—such as the failure of the oil cooler or EGR cooler, or high boost/load levels brought on by performance upgrades—TTY bolts can be stretched beyond their torque mark by increased cylinder pressures (commonly from coolant being introduced into the cylinder). This has never been addressed by Ford because other malfunctions or abuse must occur to stretch the bolts. Some in the aftermarket will replace the factory bolts with head studs in an attempt to protect the head gaskets from future failure. If this is done without addressing the underlying issue, the head gaskets may fail again bringing along a cracked or warped cylinder head. In contrast, the 7.3 and 6.7 have six head bolts per cylinder while the 6.0, 6.4/VT365, and IDI 7.3 only have four.<ref>{{Cite web|url=https://dieseliq.com/problems-with-power-stroke-60|title=The Biggest Problems With Power Stroke 6.0 Liter Diesel Engines|website=Diesel IQ|date=December 2020}}</ref> ====Electrical and fuel==== Numerous [[engine control unit|PCM]] recalibrations, attempts to "detune" the engine, fuel injector stiction (caused by lack of maintenance and proper oil changes), along with several other drivebility and [[quality control]] problems, have plagued the 6.0. The FICM (fuel injection control module) has been a problem, where low voltage in the vehicle's electrical system due to failing batteries or a low-output [[alternator]] can cause damage to the FICM. In addition, the placement of the FICM on top of the engine subjects it to varying and extreme temperatures and vibrations causing solder joints and components to fail in early build models; mostly in the power supply itself. The FICM multiplies the voltage in the fuel injector circuit from 12 to 48–50 volts to fire the injectors. Low voltage can eventually cause damage to the fuel injectors. ====Lawsuits and litigation==== Many owners who purchased their trucks equipped with the 6.0L Power Stroke engine new have received class-action lawsuit payments. Some owners have opted out of the class action lawsuit and went straight to a fraud case: one example is Charles Margeson of California, who was awarded $214,537.34 plus legal fees ($72,564.04 was for repayment of his 2006 F-350). Margeson, along with 5 other owners who opted out of the class action lawsuits, have been awarded over US$10 million.<ref>{{Cite web|url=https://www.yahoo.com/news/appeals-court-ford-committed-fraud-201213275.html|title = Appeals court: Ford committed fraud by selling defective Super Duty trucks}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)