Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Foucault pendulum
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Equation formulation for the Foucault pendulum == To model the Foucault pendulum, we consider a pendulum of length ''L'' and mass ''m'', oscillating with small amplitudes. In a reference frame rotating with Earth at angular velocity Ω, the Coriolis force must be included. The equations of motion in the horizontal plane (''x'', ''y'') are: :<math> \begin{aligned} \ddot{x} + \omega_0^2 x &= 2\Omega \sin(\varphi) \dot{y}, \\ \ddot{y} + \omega_0^2 y &= -2\Omega \sin(\varphi) \dot{x}, \end{aligned} </math> where: * <math>\omega_0 = \sqrt{\frac{g}{L}}</math> is the natural angular frequency of the pendulum, * <math>\varphi</math> is the latitude, * <math>g</math> is the acceleration due to gravity. These coupled differential equations describe the pendulum's motion, incorporating the Coriolis effect due to Earth's rotation.<ref>{{cite web |title=Foucault Pendulum Details |url=https://www.phys.unsw.edu.au/~jw/pendulumdetails.html |publisher=UNSW Physics |access-date=2025-01-11}}</ref> === Precession rate calculation === The precession rate of the pendulum’s oscillation plane depends on latitude. The angular precession rate <math>\Omega_p</math> is given by: :<math>\Omega_p = \Omega \sin(\varphi),</math> where <math>\Omega</math> is Earth's angular rotation rate (approximately <math>7.2921 \times 10^{-5}</math> radians per second).<ref>{{cite web |title=Mathematical Derivations of the Foucault Pendulum |url=https://www.idc-online.com/technical_references/pdfs/mechanical_engineering/Mathematical_derivations_of_the_Foucault_pendulum.pdf |publisher=IDC Online |access-date=2025-01-11}}</ref> === Examples of precession periods === The time <math>T_p</math> for a full rotation of the pendulum’s plane is: :<math>T_p = \frac{2\pi}{\Omega_p} = \frac{2\pi}{\Omega \sin(\varphi)}.</math> Calculations for specific locations: * '''Paris, France''' (latitude <math>\varphi \approx 48.8566^\circ</math>): :<math> \begin{aligned} \Omega_p &= \Omega \sin(48.8566^\circ) \approx 7.2921 \times 10^{-5} \times 0.7547 \\ &\approx 5.506 \times 10^{-5} \, \text{radians/second}, \\ T_p &= \frac{2\pi}{5.506 \times 10^{-5}} \approx 114,105 \, \text{seconds} \\ &\approx 31.7 \, \text{hours}. \end{aligned} </math><ref>{{cite web |title=Foucault Pendulum Derivation |url=https://warwick.ac.uk/fac/sci/physics/intranet/pendulum/derivation/ |publisher=Warwick University |access-date=2025-01-11}}</ref> * '''New York City, USA''' (latitude <math>\varphi \approx 40.7128^\circ</math>): :<math> \begin{aligned} \Omega_p &= \Omega \sin(40.7128^\circ) \approx 7.2921 \times 10^{-5} \times 0.6523 \\ &\approx 4.757 \times 10^{-5} \, \text{radians/second}, \\ T_p &= \frac{2\pi}{4.757 \times 10^{-5}} \approx 132,000 \, \text{seconds} \\ &\approx 36.7 \, \text{hours}. \end{aligned} </math><ref>{{cite web |title=Foucault Pendulum Details |url=https://www.phys.unsw.edu.au/~jw/pendulumdetails.html |publisher=UNSW Physics |access-date=2025-01-11}}</ref> These calculations show that the pendulum's precession period varies with latitude, completing a full rotation more quickly at higher latitudes.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)