Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Francium
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Other compounds=== Francium nitrate, sulfate, hydroxide, carbonate, acetate, and oxalate, are all soluble in water, while the [[iodate]], [[picrate]], [[tartrate]], [[Chloroplatinic acid|chloroplatinate]], and [[silicotungstate]] are insoluble. The insolubility of these compounds are used to extract francium from other radioactive products, such as [[zirconium]], [[niobium]], [[molybdenum]], [[tin]], [[antimony]], the method mentioned in the section above.<ref name="L&P" /> Francium oxide is believed to disproportionate to the peroxide and francium metal.<ref>{{cite report|page=9|id=UCRL-409|url=https://escholarship.org/uc/item/8056g18b|title=Low Mass Francium and Emanation Isotopes of High Alpha Stability|first1=E. K.|last1=Hyde|first2=A.|last2=Ghiorso|author-link2=Albert Ghiorso|first3=G. T.|last3=Seaborg|author-link3=Glenn Seaborg|date=10 Oct 1949|location=Berkeley, CA|institution=[[UC Radiation Laboratory]]}}</ref> The CsFr molecule is predicted to have the heavier element (francium) at the negative end of the dipole, unlike all known heterodiatomic alkali metal molecules. Francium [[superoxide]] (FrO<sub>2</sub>) is expected to have a more [[covalent]] character than its lighter [[congener (chemistry)|congeners]]; this is attributed to the 6p electrons in francium being more involved in the francium–oxygen bonding.<ref name="Thayer" /> The relativistic destabilisation of the 6p<sub>3/2</sub> spinor may make francium compounds in oxidation states higher than +1 possible, such as [Fr<sup>V</sup>F<sub>6</sub>]<sup>−</sup>; but this has not been experimentally confirmed.<ref>{{cite journal |last1=Cao |first1=Chang-Su |last2=Hu |first2=Han-Shi |last3=Schwarz |first3=W. H. Eugen |last4=Li |first4=Jun |date=2022 |title=Periodic Law of Chemistry Overturns for Superheavy Elements |type=preprint |url=https://chemrxiv.org/engage/chemrxiv/article-details/63730be974b7b6d84cfdda35 |journal=[[ChemRxiv]] |volume= |issue= |pages= |doi=10.26434/chemrxiv-2022-l798p |access-date=16 November 2022}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)