Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Free module
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Universal property == The inclusion mapping <math>\iota : E\to R^{(E)}</math> defined above is [[universal property|universal]] in the following sense. Given an arbitrary function <math>f : E\to N</math> from a set {{math|''E''}} to a left {{math|''R''}}-module {{math|''N''}}, there exists a unique [[module homomorphism]] <math>\overline{f}: R^{(E)}\to N</math> such that <math>f = \overline{f} \circ\iota</math>; namely, <math>\overline{f}</math> is defined by the formula: :<math>\overline{f}\left (\sum_{e \in E} r_e e \right) = \sum_{e \in E} r_e f(e)</math> and <math>\overline{f}</math> is said to be obtained by ''extending <math>f</math> by linearity.'' The uniqueness means that each ''R''-linear map <math>R^{(E)} \to N</math> is uniquely determined by its [[Restriction (mathematics)|restriction]] to ''E''. As usual for universal properties, this defines {{math|''R''<sup>(''E'')</sup>}} [[up to]] a [[canonical isomorphism]]. Also the formation of <math>\iota : E\to R^{(E)}</math> for each set ''E'' determines a [[functor]] : <math>R^{(-)}: \textbf{Set} \to R\text{-}\mathsf{Mod}, \, E \mapsto R^{(E)}</math>, from the [[category of sets]] to the category of left {{math|''R''}}-modules. It is called the [[free functor]] and satisfies a natural relation: for each set ''E'' and a left module ''N'', : <math>\operatorname{Hom}_{\textbf{Set}}(E, U(N)) \simeq \operatorname{Hom}_R(R^{(E)}, N), \, f \mapsto \overline{f}</math> where <math>U: R\text{-}\mathsf{Mod} \to \textbf{Set}</math> is the [[forgetful functor]], meaning <math>R^{(-)}</math> is a [[left adjoint]] of the forgetful functor.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)