Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Functional derivative
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Determining functional derivatives== A formula to determine functional derivatives for a common class of functionals can be written as the integral of a function and its derivatives. This is a generalization of the [[Euler–Lagrange equation]]: indeed, the functional derivative was introduced in [[physics]] within the derivation of the [[Joseph-Louis Lagrange|Lagrange]] equation of the second kind from the [[principle of least action]] in [[Lagrangian mechanics]] (18th century). The first three examples below are taken from [[density functional theory]] (20th century), the fourth from [[statistical mechanics]] (19th century). ===Formula=== Given a functional <math display="block">F[\rho] = \int f( \boldsymbol{r}, \rho(\boldsymbol{r}), \nabla\rho(\boldsymbol{r}) )\, d\boldsymbol{r},</math> and a function <math>\phi(\boldsymbol{r})</math> that vanishes on the boundary of the region of integration, from a previous section [[#Definition|Definition]], <math display="block">\begin{align} \int \frac{\delta F}{\delta\rho(\boldsymbol{r})} \, \phi(\boldsymbol{r}) \, d\boldsymbol{r} & = \left [ \frac{d}{d\varepsilon} \int f( \boldsymbol{r}, \rho + \varepsilon \phi, \nabla\rho+\varepsilon\nabla\phi )\, d\boldsymbol{r} \right ]_{\varepsilon=0} \\ & = \int \left( \frac{\partial f}{\partial\rho} \, \phi + \frac{\partial f}{\partial\nabla\rho} \cdot \nabla\phi \right) d\boldsymbol{r} \\ & = \int \left[ \frac{\partial f}{\partial\rho} \, \phi + \nabla \cdot \left( \frac{\partial f}{\partial\nabla\rho} \, \phi \right) - \left( \nabla \cdot \frac{\partial f}{\partial\nabla\rho} \right) \phi \right] d\boldsymbol{r} \\ & = \int \left[ \frac{\partial f}{\partial\rho} \, \phi - \left( \nabla \cdot \frac{\partial f}{\partial\nabla\rho} \right) \phi \right] d\boldsymbol{r} \\ & = \int \left( \frac{\partial f}{\partial\rho} - \nabla \cdot \frac{\partial f}{\partial\nabla\rho} \right) \phi(\boldsymbol{r}) \ d\boldsymbol{r} \, . \end{align}</math> The second line is obtained using the [[total derivative]], where {{math|''∂f'' /''∂∇ρ''}} is a [[Matrix calculus#Scalar-by-vector|derivative of a scalar with respect to a vector]].<ref group="Note">For a three-dimensional Cartesian coordinate system, <math display="block">\frac{\partial f}{\partial\nabla\rho} = \frac{\partial f}{\partial\rho_x} \mathbf{\hat{i}} + \frac{\partial f}{\partial\rho_y} \mathbf{\hat{j}} + \frac{\partial f}{\partial\rho_z} \mathbf{\hat{k}}\, ,</math> where <math>\rho_x = \frac{\partial \rho}{\partial x}\, , \ \rho_y = \frac{\partial \rho}{\partial y}\, , \ \rho_z = \frac{\partial \rho}{\partial z}</math> and <math>\mathbf{\hat{i}}</math>, <math>\mathbf{\hat{j}}</math>, <math>\mathbf{\hat{k}}</math> are unit vectors along the x, y, z axes.</ref> The third line was obtained by use of a [[Divergence#Properties|product rule for divergence]]. The fourth line was obtained using the [[divergence theorem]] and the condition that <math>\phi=0</math> on the boundary of the region of integration. Since <math>\phi</math> is also an arbitrary function, applying the [[fundamental lemma of calculus of variations]] to the last line, the functional derivative is <math display="block">\frac{\delta F}{\delta\rho(\boldsymbol{r})} = \frac{\partial f}{\partial\rho} - \nabla \cdot \frac{\partial f}{\partial\nabla\rho} </math> where {{math|1=''ρ'' = ''ρ''('''''r''''')}} and {{math|1=''f'' = ''f'' ('''''r''''', ''ρ'', ∇''ρ'')}}. This formula is for the case of the functional form given by {{math|''F''[''ρ'']}} at the beginning of this section. For other functional forms, the definition of the functional derivative can be used as the starting point for its determination. (See the example [[#Coulomb potential energy functional|Coulomb potential energy functional]].) The above equation for the functional derivative can be generalized to the case that includes higher dimensions and higher order derivatives. The functional would be, <math display="block">F[\rho(\boldsymbol{r})] = \int f( \boldsymbol{r}, \rho(\boldsymbol{r}), \nabla\rho(\boldsymbol{r}), \nabla^{(2)}\rho(\boldsymbol{r}), \dots, \nabla^{(N)}\rho(\boldsymbol{r}))\, d\boldsymbol{r},</math> where the vector {{math|'''''r''''' ∈ '''R'''<sup>''n''</sup>}}, and {{math|∇<sup>(''i'')</sup>}} is a tensor whose {{math|''n<sup>i</sup>''}} components are partial derivative operators of order {{math|''i''}}, <math display="block"> \left [ \nabla^{(i)} \right ]_{\alpha_1 \alpha_2 \cdots \alpha_i} = \frac {\partial^{\, i}} {\partial r_{\alpha_1} \partial r_{\alpha_2} \cdots \partial r_{\alpha_i} } \qquad \qquad \text{where} \quad \alpha_1, \alpha_2, \dots, \alpha_i = 1, 2, \dots , n \ . </math><ref group="Note">For example, for the case of three dimensions ({{math|1=''n'' = 3}}) and second order derivatives ({{math|1=''i'' = 2}}), the tensor {{math|∇<sup>(2)</sup>}} has components, <math display="block"> \left [ \nabla^{(2)} \right ]_{\alpha \beta} = \frac {\partial^{\,2}} {\partial r_{\alpha} \, \partial r_{\beta}} </math>where <math>\alpha</math> and <math>\beta</math> can be <math>1,2,3</math>.</ref> An analogous application of the definition of the functional derivative yields <math display="block">\begin{align} \frac{\delta F[\rho]}{\delta \rho} &{} = \frac{\partial f}{\partial\rho} - \nabla \cdot \frac{\partial f}{\partial(\nabla\rho)} + \nabla^{(2)} \cdot \frac{\partial f}{\partial\left(\nabla^{(2)}\rho\right)} + \dots + (-1)^N \nabla^{(N)} \cdot \frac{\partial f}{\partial\left(\nabla^{(N)}\rho\right)} \\ &{} = \frac{\partial f}{\partial\rho} + \sum_{i=1}^N (-1)^{i}\nabla^{(i)} \cdot \frac{\partial f}{\partial\left(\nabla^{(i)}\rho\right)} \ . \end{align}</math> In the last two equations, the {{math|''n<sup>i</sup>''}} components of the tensor <math> \frac{\partial f}{\partial\left(\nabla^{(i)}\rho\right)} </math> are partial derivatives of {{math|''f''}} with respect to partial derivatives of ''ρ'', <math display="block"> \left [ \frac {\partial f} {\partial \left (\nabla^{(i)}\rho \right ) } \right ]_{\alpha_1 \alpha_2 \cdots \alpha_i} = \frac {\partial f} {\partial \rho_{\alpha_1 \alpha_2 \cdots \alpha_i} } </math> where <math> \rho_{\alpha_1 \alpha_2 \cdots \alpha_i} \equiv \frac {\partial^{\,i}\rho} {\partial r_{\alpha_1} \, \partial r_{\alpha_2} \cdots \partial r_{\alpha_i} } </math>, and the tensor scalar product is, <math display="block"> \nabla^{(i)} \cdot \frac{\partial f}{\partial\left(\nabla^{(i)}\rho\right)} = \sum_{\alpha_1, \alpha_2, \cdots, \alpha_i = 1}^n \ \frac {\partial^{\, i} } {\partial r_{\alpha_1} \, \partial r_{\alpha_2} \cdots \partial r_{\alpha_i} } \ \frac {\partial f} {\partial \rho_{\alpha_1 \alpha_2 \cdots \alpha_i} } \ . </math> <ref group="Note">For example, for the case {{math|1=''n'' = 3}} and {{math|1=''i'' = 2}}, the tensor scalar product is, <math display="block"> \nabla^{(2)} \cdot \frac{\partial f}{\partial\left(\nabla^{(2)}\rho\right)} = \sum_{\alpha, \beta = 1}^3 \ \frac {\partial^{\, 2} } {\partial r_{\alpha} \, \partial r_{\beta} } \, \frac {\partial f} {\partial \rho_{\alpha \beta} } , </math>where <math>\rho_{\alpha \beta} \equiv \frac {\partial^{\, 2}\rho} {\partial r_{\alpha} \, \partial r_{\beta} }</math>.</ref> ===Examples=== ====Thomas–Fermi kinetic energy functional==== The [[Thomas–Fermi model]] of 1927 used a kinetic energy functional for a noninteracting uniform [[free electron model|electron gas]] in a first attempt of [[density-functional theory]] of electronic structure: <math display="block">T_\mathrm{TF}[\rho] = C_\mathrm{F} \int \rho^{5/3}(\mathbf{r}) \, d\mathbf{r} \, .</math> Since the integrand of {{math|''T''<sub>TF</sub>[''ρ'']}} does not involve derivatives of {{math|''ρ''('''''r''''')}}, the functional derivative of {{math|''T''<sub>TF</sub>[''ρ'']}} is,<ref name=ParrYangP247A.6>{{harvp|Parr|Yang|1989|loc=p. 247, Eq. A.6}}.</ref> <math display="block">\frac{\delta T_{\mathrm{TF}}}{\delta \rho (\boldsymbol{r}) } = C_\mathrm{F} \frac{\partial \rho^{5/3}(\mathbf{r})}{\partial \rho(\mathbf{r})} = \frac{5}{3} C_\mathrm{F} \rho^{2/3}(\mathbf{r}) \, .</math> ====Coulomb potential energy functional==== The '''electron-nucleus''' potential energy is <math display="block">V[\rho] = \int \frac{\rho(\boldsymbol{r})}{|\boldsymbol{r}|} \ d\boldsymbol{r}.</math> Applying the definition of functional derivative, <math display="block">\begin{align} \int \frac{\delta V}{\delta \rho(\boldsymbol{r})} \ \phi(\boldsymbol{r}) \ d\boldsymbol{r} & {} = \left [ \frac{d}{d\varepsilon} \int \frac{\rho(\boldsymbol{r}) + \varepsilon \phi(\boldsymbol{r})}{|\boldsymbol{r}|} \ d\boldsymbol{r} \right ]_{\varepsilon=0} \\[1ex] & {} = \int \frac {\phi(\boldsymbol{r})} {|\boldsymbol{r}|} \ d\boldsymbol{r} \, . \end{align}</math> So, <math display="block"> \frac{\delta V}{\delta \rho(\boldsymbol{r})} = \frac{1}{|\boldsymbol{r}|} \ . </math> The functional derivative of the classical part of the '''electron-electron interaction''' (often called Hartree energy) is <math display="block">J[\rho] = \frac{1}{2}\iint \frac{\rho(\mathbf{r}) \rho(\mathbf{r}')}{| \mathbf{r}-\mathbf{r}' |}\, d\mathbf{r} d\mathbf{r}' \, .</math> From the [[#Functional derivative|definition of the functional derivative]], <math display="block">\begin{align} \int \frac{\delta J}{\delta\rho(\boldsymbol{r})} \phi(\boldsymbol{r})d\boldsymbol{r} & {} = \left [ \frac {d \ }{d\varepsilon} \, J[\rho + \varepsilon\phi] \right ]_{\varepsilon = 0} \\ & {} = \left [ \frac {d \ }{d\varepsilon} \, \left ( \frac{1}{2}\iint \frac {[\rho(\boldsymbol{r}) + \varepsilon \phi(\boldsymbol{r})] \, [\rho(\boldsymbol{r}') + \varepsilon \phi(\boldsymbol{r}')] }{| \boldsymbol{r}-\boldsymbol{r}' |}\, d\boldsymbol{r} d\boldsymbol{r}' \right ) \right ]_{\varepsilon = 0} \\ & {} = \frac{1}{2}\iint \frac {\rho(\boldsymbol{r}') \phi(\boldsymbol{r}) }{| \boldsymbol{r}-\boldsymbol{r}' |}\, d\boldsymbol{r} d\boldsymbol{r}' + \frac{1}{2}\iint \frac {\rho(\boldsymbol{r}) \phi(\boldsymbol{r}') }{| \boldsymbol{r}-\boldsymbol{r}' |}\, d\boldsymbol{r} d\boldsymbol{r}' \\ \end{align}</math> The first and second terms on the right hand side of the last equation are equal, since {{math|'''''r'''''}} and {{math|'''''r′'''''}} in the second term can be interchanged without changing the value of the integral. Therefore, <math display="block"> \int \frac{\delta J}{\delta\rho(\boldsymbol{r})} \phi(\boldsymbol{r})d\boldsymbol{r} = \int \left ( \int \frac {\rho(\boldsymbol{r}') }{| \boldsymbol{r}-\boldsymbol{r}' |} d\boldsymbol{r}' \right ) \phi(\boldsymbol{r}) d\boldsymbol{r} </math> and the functional derivative of the electron-electron Coulomb potential energy functional {{math|''J''}}[''ρ''] is,<ref name=ParrYangP248A.11>{{harvp|Parr|Yang|1989|loc=p. 248, Eq. A.11}}.</ref> <math display="block"> \frac{\delta J}{\delta\rho(\boldsymbol{r})} = \int \frac {\rho(\boldsymbol{r}') }{| \boldsymbol{r}-\boldsymbol{r}' |} d\boldsymbol{r}' \, . </math> The second functional derivative is <math display="block">\frac{\delta^2 J[\rho]}{\delta \rho(\mathbf{r}')\delta\rho(\mathbf{r})} = \frac{\partial}{\partial \rho(\mathbf{r}')} \left ( \frac{\rho(\mathbf{r}')}{| \mathbf{r}-\mathbf{r}' |} \right ) = \frac{1}{| \mathbf{r}-\mathbf{r}' |}.</math> ====von Weizsäcker kinetic energy functional==== In 1935 [[Carl Friedrich von Weizsacker|von Weizsäcker]] proposed to add a gradient correction to the Thomas-Fermi kinetic energy functional to make it better suit a molecular electron cloud: <math display="block">T_\mathrm{W}[\rho] = \frac{1}{8} \int \frac{\nabla\rho(\mathbf{r}) \cdot \nabla\rho(\mathbf{r})}{ \rho(\mathbf{r}) } d\mathbf{r} = \int t_\mathrm{W}(\mathbf{r}) \ d\mathbf{r} \, ,</math> where <math display="block"> t_\mathrm{W} \equiv \frac{1}{8} \frac{\nabla\rho \cdot \nabla\rho}{ \rho } \qquad \text{and} \ \ \rho = \rho(\boldsymbol{r}) \ . </math> Using a previously derived [[#Formula|formula]] for the functional derivative, <math display="block">\begin{align} \frac{\delta T_\mathrm{W}}{\delta \rho} & = \frac{\partial t_\mathrm{W}}{\partial \rho} - \nabla\cdot\frac{\partial t_\mathrm{W}}{\partial \nabla \rho} \\ & = -\frac{1}{8}\frac{\nabla\rho \cdot \nabla\rho}{\rho^2} - \left ( \frac {1}{4} \frac {\nabla^2\rho} {\rho} - \frac {1}{4} \frac {\nabla\rho \cdot \nabla\rho} {\rho^2} \right ) \qquad \text{where} \ \ \nabla^2 = \nabla \cdot \nabla \ , \end{align}</math> and the result is,<ref name=ParrYangP247A.9>{{harvp|Parr|Yang|1989|loc= p. 247, Eq. A.9}}.</ref> <math display="block"> \frac{\delta T_\mathrm{W}}{\delta \rho} = \ \ \, \frac{1}{8}\frac{\nabla\rho \cdot \nabla\rho}{\rho^2} - \frac{1}{4}\frac{\nabla^2\rho}{\rho} \ . </math> ====Entropy==== The [[information entropy|entropy]] of a discrete [[random variable]] is a functional of the [[probability mass function]]. <math display="block">H[p(x)] = -\sum_x p(x) \log p(x)</math> Thus, <math display="block">\begin{align} \sum_x \frac{\delta H}{\delta p(x)} \, \phi(x) & {} = \left[ \frac{d}{d\varepsilon} H[p(x) + \varepsilon\phi(x)] \right]_{\varepsilon=0}\\ & {} = \left [- \, \frac{d}{d\varepsilon} \sum_x \, [p(x) + \varepsilon\phi(x)] \ \log [p(x) + \varepsilon\phi(x)] \right]_{\varepsilon=0} \\ & {} = -\sum_x \, [1+\log p(x)] \ \phi(x) \, . \end{align}</math> Thus, <math display="block">\frac{\delta H}{\delta p(x)} = -1-\log p(x).</math> ==== Exponential ==== Let <math display="block"> F[\varphi(x)]= e^{\int \varphi(x) g(x)dx}.</math> Using the delta function as a test function, <math display="block">\begin{align} \frac{\delta F[\varphi(x)]}{\delta \varphi(y)} & {} = \lim_{\varepsilon\to 0}\frac{F[\varphi(x)+\varepsilon\delta(x-y)]-F[\varphi(x)]}{\varepsilon}\\ & {} = \lim_{\varepsilon\to 0}\frac{e^{\int (\varphi(x)+\varepsilon\delta(x-y)) g(x)dx}-e^{\int \varphi(x) g(x)dx}}{\varepsilon}\\ & {} = e^{\int \varphi(x) g(x)dx}\lim_{\varepsilon\to 0}\frac{e^{\varepsilon \int \delta(x-y) g(x)dx}-1}{\varepsilon}\\ & {} = e^{\int \varphi(x) g(x)dx}\lim_{\varepsilon\to 0}\frac{e^{\varepsilon g(y)}-1}{\varepsilon}\\ & {} = e^{\int \varphi(x) g(x)dx}g(y). \end{align}</math> Thus, <math display="block"> \frac{\delta F[\varphi(x)]}{\delta \varphi(y)} = g(y) F[\varphi(x)]. </math> This is particularly useful in calculating the [[Correlation function (quantum field theory)|correlation functions]] from the [[Partition function (quantum field theory)|partition function]] in [[quantum field theory]]. ====Functional derivative of a function==== A function can be written in the form of an integral like a functional. For example, <math display="block">\rho(\boldsymbol{r}) = F[\rho] = \int \rho(\boldsymbol{r}') \delta(\boldsymbol{r}-\boldsymbol{r}')\, d\boldsymbol{r}'.</math> Since the integrand does not depend on derivatives of ''ρ'', the functional derivative of ''ρ''{{math|('''''r''''')}} is, <math display="block">\frac {\delta \rho(\boldsymbol{r})} {\delta\rho(\boldsymbol{r}')} \equiv \frac {\delta F} {\delta\rho(\boldsymbol{r}')} = \frac{\partial \ \ }{\partial \rho(\boldsymbol{r}')} \, [\rho(\boldsymbol{r}') \delta(\boldsymbol{r}-\boldsymbol{r}')] = \delta(\boldsymbol{r}-\boldsymbol{r}').</math> ==== Functional derivative of iterated function==== The functional derivative of the iterated function <math>f(f(x))</math> is given by: <math display="block">\frac{\delta f(f(x))}{\delta f(y) } = f'(f(x))\delta(x-y) + \delta(f(x)-y)</math> and <math display="block">\frac{\delta f(f(f(x)))}{\delta f(y) } = f'(f(f(x))(f'(f(x))\delta(x-y) + \delta(f(x)-y)) + \delta(f(f(x))-y)</math> In general: <math display="block">\frac{\delta f^N(x)}{\delta f(y)} = f'( f^{N-1}(x) ) \frac{ \delta f^{N-1}(x)}{\delta f(y)} + \delta( f^{N-1}(x) - y ) </math> Putting in {{math|1=''N'' = 0}} gives: <math display="block"> \frac{\delta f^{-1}(x)}{\delta f(y) } = - \frac{ \delta(f^{-1}(x)-y ) }{ f'(f^{-1}(x)) }</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)