Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gamma function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Euler's definition as an infinite product ==== <!-- Linked to from [[Binomial coefficient]] -->For a fixed integer <math>m</math>, as the integer <math>n</math> increases, we have that<ref>{{Cite journal |last=Davis |first=Philip |title=Leonhard Euler's Integral: A Historical Profile of the Gamma Function |url=https://ia800108.us.archive.org/view_archive.php?archive=/24/items/wikipedia-scholarly-sources-corpus/10.2307%252F2287541.zip&file=10.2307%252F2309786.pdf |website=maa.org}}</ref> <math display="block">\lim_{n \to \infty} \frac{n! \, \left(n+1\right)^m}{(n+m)!} = 1\,.</math> If <math>m</math> is not an integer, then this equation is meaningless, since in this section the factorial of a non-integer has not been defined yet. However, let us assume that this equation continues to hold when <math>m</math> is replaced by an arbitrary complex number <math>z</math>, in order to define the Gamma function for non-integers: <math display="block">\lim_{n \to \infty} \frac{n! \, \left(n+1\right)^z}{(n+z)!} = 1\,.</math> Multiplying both sides by <math>(z-1)!</math> gives <math display="block">\begin{align} (z-1)! &= \frac{1}{z} \lim_{n \to \infty} n!\frac{z!}{(n+z)!} (n+1)^z \\[8pt] &= \frac{1}{z} \lim_{n \to \infty} (1 \cdot2\cdots n)\frac{1}{(1+z) \cdots (n+z)} \left(\frac{2}{1} \cdot \frac{3}{2} \cdots \frac{n+1}{n}\right)^z \\[8pt] &= \frac{1}{z} \prod_{n=1}^\infty \left[ \frac{1}{1+\frac{z}{n}} \left(1 + \frac{1}{n}\right)^z \right]. \end{align}</math>This [[infinite product]], which is due to Euler,<ref>{{Cite journal |last=Bonvini |first=Marco |date=October 9, 2010 |title=The Gamma function |url=https://www.roma1.infn.it/~bonvini/math/Marco_Bonvini__Gamma_function.pdf |journal=Roma1.infn.it}}</ref> converges for all complex numbers <math>z</math> except the non-positive integers, which fail because of a division by zero. In fact, the above assumption produces a unique definition of <math>\Gamma(z)</math> as {{tmath|(z-1)!}}. Intuitively, this formula indicates that <math>\Gamma(z)</math> is approximately the result of computing <math>\Gamma(n+1)=n!</math> for some large integer <math>n</math>, multiplying by <math>(n+1)^z</math> to approximate <math>\Gamma(n+z+1)</math>, and then using the relationship <math>\Gamma(x+1) = x \Gamma(x)</math> backwards <math>n+1</math> times to get an approximation for <math>\Gamma(z)</math>; and furthermore that this approximation becomes exact as <math>n</math> increases to infinity. The infinite product for the [[reciprocal gamma function|reciprocal]] <math display="block">\frac{1}{\Gamma(z)} = z \prod_{n=1}^\infty \left[ \left(1+\frac{z}{n}\right) / {\left(1 + \frac{1}{n}\right)^z} \right]</math> is an [[entire function]], converging for every complex number {{mvar|z}}.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)