Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gell-Mann matrices
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Fierz completeness relations=== Since the eight matrices and the identity are a complete trace-orthogonal set spanning all 3Γ3 matrices, it is straightforward to find two Fierz '''''completeness relations''''', (Li & Cheng, 4.134), analogous to that [[Pauli matrices#Completeness relation 2|satisfied by the Pauli matrices]]. Namely, using the dot to sum over the eight matrices and using Greek indices for their row/column indices, the following identities hold, :<math>\delta^\alpha _\beta \delta^\gamma _\delta = \frac{1}{3} \delta^\alpha_\delta \delta^\gamma _\beta +\frac{1}{2} \lambda^\alpha _\delta \cdot \lambda^\gamma _\beta </math> and :<math>\lambda^\alpha _\beta \cdot \lambda^\gamma _\delta = \frac{16}{9} \delta^\alpha_\delta \delta^\gamma _\beta -\frac{1}{3} \lambda^\alpha _\delta \cdot \lambda^\gamma _\beta ~.</math> One may prefer the recast version, resulting from a linear combination of the above, :<math>\lambda^\alpha _\beta \cdot \lambda^\gamma _\delta = 2 \delta^\alpha_\delta \delta^\gamma _\beta -\frac{2}{3} \delta^\alpha_\beta \delta^\gamma _\delta ~.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)