Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
General recursive function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Normal form theorem == A [[Kleene's T predicate#Normal form theorem|normal form theorem]] due to Kleene says that for each ''k'' there are primitive recursive functions <math>U(y)\!</math> and <math>T(y,e,x_1,\ldots,x_k)\!</math> such that for any μ-recursive function <math>f(x_1,\ldots,x_k)\!</math> with ''k'' free variables there is an ''e'' such that :<math>f(x_1,\ldots,x_k) \simeq U(\mu(T)(e,x_1,\ldots,x_k))</math>. The number ''e'' is called an ''index'' or ''[[Gödel number]]'' for the function ''f''.<ref>{{cite journal | doi=10.1090/S0002-9947-1943-0007371-8 | url=https://www.ams.org/journals/tran/1943-053-01/S0002-9947-1943-0007371-8/S0002-9947-1943-0007371-8.pdf | author=Stephen Cole Kleene | title=Recursive predicates and quantifiers | journal=Transactions of the American Mathematical Society | volume=53 | number=1 | pages=41–73 | date=Jan 1943 | doi-access=free }}</ref>{{rp|52–53}} A consequence of this result is that any μ-recursive function can be defined using a single instance of the μ operator applied to a (total) primitive recursive function. [[Marvin Minsky|Minsky]] observes the <math>U</math> defined above is in essence the μ-recursive equivalent of the [[universal Turing machine]]: {{blockquote |text=To construct U is to write down the definition of a general-recursive function U(n, x) that correctly interprets the number n and computes the appropriate function of x. to construct U directly would involve essentially the same amount of effort, ''and essentially the same ideas'', as we have invested in constructing the universal Turing machine {{sfn|Minsky|1972|pp=189}}}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)