Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Generalized Stokes theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Classical vector analysis example == Let <math>\gamma:[a,b]\to\R^2</math> be a [[piecewise]] smooth [[Jordan curve|Jordan plane curve]]. The [[Jordan curve theorem]] implies that <math>\gamma</math> divides <math>\R^2</math> into two components, a [[compact space|compact]] one and another that is non-compact. Let <math>D</math> denote the compact part that is bounded by <math>\gamma</math> and suppose <math>\psi:D\to\R^3</math> is smooth, with <math>S=\psi(D)</math>. If <math>\Gamma</math> is the [[space curve]] defined by <math>\Gamma(t)=\psi(\gamma(t))</math><ref name="cgamma" group="note"><math>\gamma</math> and <math>\Gamma</math> are both loops, however, <math>\Gamma</math> is not necessarily a [[Jordan curve]]</ref> and <math>\textbf{F}</math> is a smooth vector field on <math>\R^3</math>, then:<ref name="Jame">{{cite book |last=Stewart |first=James |url={{Google books |plainurl=yes |id=btIhvKZCkTsC |page=786 }} |title=Essential Calculus: Early Transcendentals |publisher=Cole |year=2010}}</ref><ref name="bath">This proof is based on the Lecture Notes given by Prof. Robert Scheichl ([[University of Bath]], U.K) [http://www.maths.bath.ac.uk/~masrs/ma20010/], please refer the [http://www.maths.bath.ac.uk/~masrs/ma20010/stokesproofs.pdf]</ref><ref name="proofwik">{{cite web |title=This proof is also same to the proof shown in |url=http://www.proofwiki.org/wiki/Classical_Stokes'_Theorem}}</ref> <math display="block">\oint_\Gamma \mathbf{F}\, \cdot\, d{\mathbf{\Gamma}} = \iint_S \left( \nabla \times \mathbf{F} \right) \cdot\, d\mathbf{S} </math> This classical statement is a special case of the general formulation after making an identification of vector field with a 1-form and its curl with a two form through <math display="block">\begin{pmatrix} F_x \\ F_y \\ F_z \\ \end{pmatrix}\cdot d\Gamma \to F_x \,dx + F_y \,dy + F_z \,dz</math> <math display="block">\begin{align} &\nabla \times \begin{pmatrix} F_x \\ F_y \\ F_z \end{pmatrix} \cdot d\mathbf{S} = \begin{pmatrix} \partial_y F_z - \partial_z F_y \\ \partial_z F_x - \partial_x F_z \\ \partial_x F_y - \partial_y F_x \\ \end{pmatrix} \cdot d\mathbf{S} \to \\[1.4ex] &d(F_x \,dx + F_y \,dy + F_z \,dz) = \left(\partial_y F_z - \partial_z F_y\right) dy \wedge dz + \left(\partial_z F_x -\partial_x F_z\right) dz \wedge dx + \left(\partial_x F_y - \partial_y F_x\right) dx \wedge dy. \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)