Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Generating function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Types== ===Ordinary generating function (OGF)=== When the term ''generating function'' is used without qualification, it is usually taken to mean an ordinary generating function. The ''ordinary generating function'' of a sequence {{math|''a''<sub>''n''</sub>}} is: <math display="block">G(a_n;x)=\sum_{n=0}^\infty a_n x^n.</math> If {{math|''a''<sub>''n''</sub>}} is the [[probability mass function]] of a [[discrete random variable]], then its ordinary generating function is called a [[probability-generating function]]. ===Exponential generating function (EGF)=== The ''exponential generating function'' of a sequence {{math|''a''<sub>''n''</sub>}} is <math display="block">\operatorname{EG}(a_n;x)=\sum_{n=0}^\infty a_n \frac{x^n}{n!}.</math> Exponential generating functions are generally more convenient than ordinary generating functions for [[combinatorial enumeration]] problems that involve labelled objects.<ref>{{harvnb|Flajolet|Sedgewick|2009|p=95}}</ref> Another benefit of exponential generating functions is that they are useful in transferring linear [[recurrence relations]] to the realm of [[differential equations]]. For example, take the [[Fibonacci sequence]] {{math|{''f<sub>n</sub>''}<nowiki/>}} that satisfies the linear recurrence relation {{math|''f''<sub>''n''+2</sub> {{=}} ''f''<sub>''n''+1</sub> + ''f''<sub>''n''</sub>}}. The corresponding exponential generating function has the form <math display="block">\operatorname{EF}(x) = \sum_{n=0}^\infty \frac{f_n}{n!} x^n</math> and its derivatives can readily be shown to satisfy the differential equation {{math|EF{{pprime}}(''x'') {{=}} EF{{prime}}(''x'') + EF(''x'')}} as a direct analogue with the recurrence relation above. In this view, the factorial term {{math|''n''!}} is merely a counter-term to normalise the derivative operator acting on {{math|''x''<sup>''n''</sup>}}. ===Poisson generating function=== The ''Poisson generating function'' of a sequence {{math|''a''<sub>''n''</sub>}} is <math display="block">\operatorname{PG}(a_n;x)=\sum _{n=0}^\infty a_n e^{-x} \frac{x^n}{n!} = e^{-x}\, \operatorname{EG}(a_n;x).</math> ===Lambert series=== {{main article|Lambert series}} The ''Lambert series'' of a sequence {{math|''a''<sub>''n''</sub>}} is <math display="block">\operatorname{LG}(a_n;x)=\sum _{n=1}^\infty a_n \frac{x^n}{1-x^n}.</math>Note that in a Lambert series the index {{mvar|n}} starts at 1, not at 0, as the first term would otherwise be undefined. The Lambert series coefficients in the power series expansions <math display="block">b_n := [x^n] \operatorname{LG}(a_n;x)</math>for integers {{math|''n'' β₯ 1}} are related by the [[Divisor sum identities|divisor sum]] <math display="block">b_n = \sum_{d|n} a_d.</math>The [[Lambert series|main article]] provides several more classical, or at least well-known examples related to special [[arithmetic functions]] in [[number theory]]. As an example of a Lambert series identity not given in the main article, we can show that for {{math|{{abs|''x''}}, {{abs|''xq''}} < 1}} we have that <ref>{{cite web |date=2017 |title=Lambert series identity |url=https://mathoverflow.net/q/140418 |website=Math Overflow}}</ref><math display="block">\sum_{n = 1}^\infty \frac{q^n x^n}{1-x^n} = \sum_{n = 1}^\infty \frac{q^n x^{n^2}}{1-q x^n} + \sum_{n = 1}^\infty \frac{q^n x^{n(n+1)}}{1-x^n}, </math> where we have the special case identity for the generating function of the [[divisor function]], {{math|''d''(''n'') β‘ ''Ο''<sub>0</sub>(''n'')}}, given by<math display="block">\sum_{n = 1}^\infty \frac{x^n}{1-x^n} = \sum_{n = 1}^\infty \frac{x^{n^2} \left(1+x^n\right)}{1-x^n}. </math> ===Bell series=== The [[Bell series]] of a sequence {{math|''a''<sub>''n''</sub>}} is an expression in terms of both an indeterminate {{mvar|x}} and a prime {{mvar|p}} and is given by:<ref>{{Apostol IANT}} pp.42β43</ref> <math display="block">\operatorname{BG}_p(a_n;x) = \sum_{n=0}^\infty a_{p^n}x^n.</math> ===Dirichlet series generating functions (DGFs)=== [[Formal Dirichlet series]] are often classified as generating functions, although they are not strictly formal power series. The ''Dirichlet series generating function'' of a sequence {{math|''a''<sub>''n''</sub>}} is:<ref name="W56">{{harvnb|Wilf|1994|p=56}}</ref> <math display="block">\operatorname{DG}(a_n;s)=\sum _{n=1}^\infty \frac{a_n}{n^s}.</math> The Dirichlet series generating function is especially useful when {{math|''a''<sub>''n''</sub>}} is a [[multiplicative function]], in which case it has an [[Euler product]] expression<ref name="W59">{{harvnb|Wilf|1994|p=59}}</ref> in terms of the function's Bell series: <math display="block">\operatorname{DG}(a_n;s)=\prod_{p} \operatorname{BG}_p(a_n;p^{-s})\,.</math> If {{math|''a''<sub>''n''</sub>}} is a [[Dirichlet character]] then its Dirichlet series generating function is called a [[Dirichlet L-series|Dirichlet {{mvar|L}}-series]]. We also have a relation between the pair of coefficients in the [[Lambert series]] expansions above and their DGFs. Namely, we can prove that: <math display="block">[x^n] \operatorname{LG}(a_n; x) = b_n</math>if and only if <math display="block">\operatorname{DG}(a_n;s) \zeta(s) = \operatorname{DG}(b_n;s),</math>where {{math|''ΞΆ''(''s'')}} is the [[Riemann zeta function]].<ref>{{cite book |last1=Hardy |first1=G.H. |last2=Wright |first2=E.M. |last3=Heath-Brown |first3=D.R |last4=Silverman |first4=J.H. |title=An Introduction to the Theory of Numbers|url=https://archive.org/details/introductiontoth00ghha_922|url-access=limited|publisher=Oxford University Press |page=[https://archive.org/details/introductiontoth00ghha_922/page/n357 339]|edition=6th |isbn=9780199219858 |year=2008}}</ref> The sequence {{mvar|a<sub>k</sub>}} generated by a [[Dirichlet series]] generating function (DGF) corresponding to:<math display="block">\operatorname{DG}(a_k;s)=\zeta(s)^m</math>has the ordinary generating function:<math display="block">\sum_{k=1}^{k=n} a_k x^k = x + \binom{m}{1} \sum_{2 \leq a \leq n} x^{a} + \binom{m}{2}\underset{ab \leq n}{\sum_{a = 2}^\infty \sum_{b = 2}^\infty} x^{ab} + \binom{m}{3}\underset{abc \leq n}{\sum_{a = 2}^\infty \sum_{c = 2}^\infty \sum_{b = 2}^\infty} x^{abc} + \binom{m}{4}\underset{abcd \leq n}{\sum_{a = 2}^\infty \sum_{b = 2}^\infty \sum_{c = 2}^\infty \sum_{d = 2}^\infty} x^{abcd} + \cdots</math> ===Polynomial sequence generating functions=== The idea of generating functions can be extended to sequences of other objects. Thus, for example, polynomial sequences of [[binomial type]] are generated by: <math display="block">e^{xf(t)}=\sum_{n=0}^\infty \frac{p_n(x)}{n!} t^n</math>where {{math|''p''<sub>''n''</sub>(''x'')}} is a sequence of polynomials and {{math|''f''(''t'')}} is a function of a certain form. [[Sheffer sequence]]s are generated in a similar way. See the main article [[generalized Appell polynomials]] for more information. Examples of [[polynomial sequence]]s generated by more complex generating functions include: * [[Appell polynomials]] * [[Chebyshev polynomials]] * [[Difference polynomials]] * [[Generalized Appell polynomials]] * [[Q-difference polynomial|{{mvar|q}}-difference polynomials]] === Other generating functions === Other sequences generated by more complex generating functions include: * Double exponential generating functions e.g. the [[Bell numbers#Generating function|Bell numbers]] * Hadamard products of generating functions and diagonal generating functions, and their corresponding [[generating function transformation#Hadamard products and diagonal generating functions|integral transformations]] ==== Convolution polynomials ==== Knuth's article titled "''Convolution Polynomials''"<ref>{{cite journal |last1=Knuth |first1=D. E. |date=1992 |title=Convolution Polynomials |journal=Mathematica J. |volume=2 |pages=67β78 |arxiv=math/9207221 |bibcode=1992math......7221K}}</ref> defines a generalized class of ''convolution polynomial'' sequences by their special generating functions of the form <math display="block">F(z)^x = \exp\bigl(x \log F(z)\bigr) = \sum_{n = 0}^\infty f_n(x) z^n,</math> for some analytic function {{mvar|F}} with a power series expansion such that {{math|''F''(0) {{=}} 1}}. We say that a family of polynomials, {{math|''f''<sub>0</sub>, ''f''<sub>1</sub>, ''f''<sub>2</sub>, ...}}, forms a ''convolution family'' if {{math|[[Degree of a polynomial|deg]] ''f<sub>n</sub>'' β€ ''n''}} and if the following convolution condition holds for all {{mvar|x}}, {{mvar|y}} and for all {{math|''n'' β₯ 0}}: <math display="block">f_n(x+y) = f_n(x) f_0(y) + f_{n-1}(x) f_1(y) + \cdots + f_1(x) f_{n-1}(y) + f_0(x) f_n(y). </math> We see that for non-identically zero convolution families, this definition is equivalent to requiring that the sequence have an ordinary generating function of the first form given above. A sequence of convolution polynomials defined in the notation above has the following properties: * The sequence {{math|''n''! Β· ''f<sub>n</sub>''(''x'')}} is of [[binomial type]] * Special values of the sequence include {{math|''f<sub>n</sub>''(1) {{=}} [''z<sup>n</sup>''] ''F''(''z'')}} and {{math|''f<sub>n</sub>''(0) {{=}} ''Ξ΄''<sub>''n'',0</sub>}}, and * For arbitrary (fixed) <math>x, y, t \isin \mathbb{C}</math>, these polynomials satisfy convolution formulas of the form <math display="block">\begin{align} f_n(x+y) & = \sum_{k=0}^n f_k(x) f_{n-k}(y) \\ f_n(2x) & = \sum_{k=0}^n f_k(x) f_{n-k}(x) \\ xn f_n(x+y) & = (x+y) \sum_{k=0}^n k f_k(x) f_{n-k}(y) \\ \frac{(x+y) f_n(x+y+tn)}{x+y+tn} & = \sum_{k=0}^n \frac{x f_k(x+tk)}{x+tk} \frac{y f_{n-k}(y+t(n-k))}{y+t(n-k)}. \end{align}</math> For a fixed non-zero parameter <math>t \isin \mathbb{C}</math>, we have modified generating functions for these convolution polynomial sequences given by <math display="block">\frac{z F_n(x+tn)}{(x+tn)} = \left[z^n\right] \mathcal{F}_t(z)^x, </math> where {{math|π<sub>''t''</sub>(''z'')}} is implicitly defined by a [[functional equation]] of the form {{math|π<sub>''t''</sub>(''z'') {{=}} ''F''(''x''π<sub>''t''</sub>(''z'')<sup>''t''</sup>)}}. Moreover, we can use matrix methods (as in the reference) to prove that given two convolution polynomial sequences, {{math|β¨ ''f<sub>n</sub>''(''x'') β©}} and {{math|β¨ ''g<sub>n</sub>''(''x'') β©}}, with respective corresponding generating functions, {{math|''F''(''z'')<sup>''x''</sup>}} and {{math|''G''(''z'')<sup>''x''</sup>}}, then for arbitrary {{mvar|t}} we have the identity <math display="block">\left[z^n\right] \left(G(z) F\left(z G(z)^t\right)\right)^x = \sum_{k=0}^n F_k(x) G_{n-k}(x+tk). </math> Examples of convolution polynomial sequences include the ''binomial power series'', {{math|π<sub>''t''</sub>(''z'') {{=}} 1 + ''z''π<sub>''t''</sub>(''z'')<sup>''t''</sup>}}, so-termed ''tree polynomials'', the [[Bell numbers]], {{math|''B''(''n'')}}, the [[Laguerre polynomials]], and the [[Stirling polynomial|Stirling convolution polynomials]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)