Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Geometric algebra
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Subgroups of the Lipschitz group === We denote the grade involution as {{tmath|1= \widehat{S} }} and reversion as {{tmath|1= \widetilde{S} }}. Although the Lipschitz group (defined as {{tmath|1= \{ S \in \mathcal{G}^{\times} \mid \widehat{S} V S^{-1} \subseteq V \} }}) and the versor group (defined as {{tmath|1= \textstyle \{ \prod_{i=0}^{k} v_i \mid v_i \in V^{\times}, k \in \N \} }}) have divergent definitions, they are the same group. Lundholm defines the {{tmath|1= \operatorname{Pin} }}, {{tmath|1= \operatorname{Spin} }}, and {{tmath|1= \operatorname{Spin}^{+} }} subgroups of the Lipschitz group.{{sfn|ps=|Lundholm|Svensson|2009|p=58}} {| class="wikitable" |- ! Subgroup !! Definition !! GA term |- | <math>\Gamma</math> || <math> \{ S \in \mathcal{G}^{\times} \mid \widehat{S} V S^{-1} \subseteq V \} </math> || versors |- | <math>\operatorname{Pin}</math> || <math> \{ S \in \Gamma \mid S \widetilde{S} = \pm 1 \} </math> || unit versors |- | <math>\operatorname{Spin}</math> || <math> {\operatorname{Pin}} \cap \mathcal{G}^{[0]} </math> || even unit versors |- | <math>\operatorname{Spin}^{+}</math> || <math> \{ S \in \operatorname{Spin} \mid S \widetilde{S} = 1 \} </math> || rotors |- |} Multiple analyses of spinors use GA as a representation.{{sfn|ps=|Francis|Kosowsky|2008}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)