Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Geometric topology
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Orientability=== {{main|Orientability}} A manifold is orientable if it has a consistent choice of [[orientation (mathematics)|orientation]], and a [[connected space|connected]] orientable manifold has exactly two different possible orientations. In this setting, various equivalent formulations of orientability can be given, depending on the desired application and level of generality. Formulations applicable to general topological manifolds often employ methods of [[homology theory]], whereas for [[differentiable manifolds]] more structure is present, allowing a formulation in terms of [[differential form]]s. An important generalization of the notion of orientability of a space is that of orientability of a family of spaces parameterized by some other space (a [[fiber bundle]]) for which an orientation must be selected in each of the spaces which varies continuously with respect to changes in the parameter values.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)