Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Geometrization conjecture
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Hyperbolic geometry H<sup>3</sup>=== {{Main|Hyperbolic geometry}} The point stabilizer is O(3, '''R'''), and the group ''G'' is the 6-dimensional Lie group O<sup>+</sup>(1, 3, '''R'''), with 2 components. There are enormous numbers of examples of these, and their classification is not completely understood. The example with smallest volume is the [[Weeks manifold]]. Other examples are given by the [[Seifert–Weber space]], or "sufficiently complicated" [[Dehn surgery|Dehn surgeries]] on [[link (knot theory)|link]]s, or most [[Haken manifold]]s. The geometrization conjecture implies that a closed 3-manifold is hyperbolic if and only if it is irreducible, [[atoroidal]], and has infinite fundamental group. This geometry can be modeled as a left invariant metric on the [[Bianchi classification|Bianchi group of type V or VII<sub>h≠0</sub>]]. Under Ricci flow, manifolds with hyperbolic geometry expand.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)