Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gravitational redshift
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Prediction of the Newtonian limit using the properties of photons ==== The formula for the gravitational red shift in the Newtonian limit can also be derived using the properties of a photon:<ref>A. Malcherek: ''Elektromagnetismus und Gravitation'', Vereinheitlichung und Erweiterung der klassischen Physik. 2. Edition, Springer-Vieweg, Wiesbaden, 2023, ISBN 978-3-658-42701-6. [[doi:10.1007/978-3-658-42702-3]]</ref> In a gravitational field <math>\vec{g}</math> a particle of mass <math>m</math> and velocity <math>\vec{v}</math> changes it's energy <math>E</math> according to: : <math>\frac{\mathrm dE}{\mathrm dt} = m \vec{g}\cdot \vec{v} = \vec{g}\cdot\vec{p}</math>. For a massless photon described by its energy <math>E = h \nu = \hbar \omega</math> and momentum <math>\vec{p} = \hbar\vec{k}</math> this equation becomes after dividing by the Planck constant <math>\hbar</math>: : <math>\frac{\mathrm d \omega}{\mathrm dt} = \vec{g}\cdot \vec{k}</math> Inserting the gravitational field of a spherical body of mass <math>M</math> within the distance <math>\vec{r}</math> : <math>\vec{g} = -G M \frac{\vec{r}}{r^3}</math> and the wave vector of a photon leaving the gravitational field in radial direction : <math>\vec{k} = \frac{\omega}{c} \frac{\vec{r}}{r}</math> the energy equation becomes : <math>\frac{\mathrm d \omega}{\mathrm dt} = -\frac{G M}{c} \frac{\omega}{r^2}.</math> Using <math>\mathrm dr = c \,\mathrm dt</math> an ordinary differential equation which is only dependent on the radial distance <math>r</math> is obtained: : <math>\frac{\mathrm d \omega}{\mathrm dr} = -\frac{G M}{c^2} \frac{\omega}{r^2} </math> For a photon starting at the surface of a spherical body with a Radius <math>R_e</math> with a frequency <math>\omega_0 = 2 \pi \nu_0</math> the analytical solution is: : <math>\frac{\mathrm d \omega}{\mathrm dr} = -\frac{G M}{c^2} \frac{\omega}{r^2} \quad \Rightarrow \quad \omega(r) = \omega_0 \exp \left ( -\frac{G M}{c^2} \left( \frac{1}{R_e} - \frac{1}{r} \right) \right) </math> In a large distance from the body <math>r \rightarrow \infty</math> an observer measures the frequency : : <math>\omega_\text{obs} = \omega_0 \exp \left ( -\frac{G M}{c^2} \left( \frac{1}{R_e} \right) \right) \simeq \omega_0 \left( 1 - \frac{G M}{R_e c^2} + \frac{1}{2} \frac{G^2 M^2}{R_e^2 c^4} - \ldots \right). </math> Therefore, the red shift is: : <math> z = \frac{\omega_0 - \omega_\text{obs}}{\omega_\text{obs}} = \frac{1 - \exp \left( -\frac{G M}{R_e c^2} \right)}{\exp \left( -\frac{G M}{R_e c^2} \right)} = \frac{1 - \exp \left( -\frac{r_S}{2 R_e} \right)}{\exp \left( -\frac{r_S}{2 R_e} \right)} </math> In the linear approximation : <math>z = \frac{ \frac{G M}{R_e c^2} - \frac{1}{2} \frac{G^2 M^2}{R_e^2 c^4} + \dots}{ 1 - \frac{G M}{R_e c^2} + \frac{1}{2} \frac{G^2 M^2}{R_e^2 c^4} - \ldots } \simeq \frac{ \frac{G M}{R_e c^2} }{ 1 - \frac{G M}{R_e c^2} + \frac{1}{2} \frac{G^2 M^2}{R_e^2 c^4} - \dots} \simeq \frac{G M}{c^2 R_e} </math> the Newtonian limit for the gravitational red shift of General Relativity is obtained.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)