Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Gyrocompass
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== First time-dependent rotation === Consider another (non-inertial) observer (the 2-O) located at the center of the Earth but rotating about the NS-axis by <math>\Omega.</math> We establish coordinates attached to this observer as <math display="block">\begin{pmatrix} X_{2}\\ Y_{2}\\ Z_{2} \end{pmatrix} = \begin{pmatrix} \cos\Omega t & \sin\Omega t & 0\\ -\sin\Omega t & \cos\Omega t & 0\\ 0 & 0 & 1 \end{pmatrix}\begin{pmatrix} X_{1}\\ Y_{1}\\ Z_{1} \end{pmatrix}</math> so that the unit <math>\hat{X}_{1}</math> versor <math>(X_{1}=1,Y_{1}=0,Z_{1}=0)^{T}</math> is mapped to the point <math>(X_{2} = \cos\Omega t, Y_{2}=-\sin\Omega t, Z_{2}=0)^{T}</math>. For the 2-O neither the Earth nor the barycenter of the gyroscope is moving. The rotation of 2-O relative to 1-O is performed with angular velocity <math>\vec{\Omega}=(0,0,\Omega)^{T}</math>. We suppose that the <math>X_{2}</math> axis denotes points with zero longitude (the prime, or Greenwich, meridian).
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)