Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Harmonic number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Arithmetic properties == The harmonic numbers have several interesting arithmetic properties. It is well-known that <math display="inline">H_n</math> is an integer [[if and only if]] <math display="inline">n=1</math>, a result often attributed to Taeisinger.<ref>{{Cite book|title=CRC Concise Encyclopedia of Mathematics|last=Weisstein|first=Eric W.|publisher=Chapman & Hall/CRC|year=2003|isbn=978-1-58488-347-0|location=Boca Raton, FL|pages=3115}}</ref> Indeed, using [[P-adic valuation|2-adic valuation]], it is not difficult to prove that for <math display="inline">n \ge 2</math> the numerator of <math display="inline">H_n</math> is an odd number while the denominator of <math display="inline">H_n</math> is an even number. More precisely, <math display="block">H_n=\frac{1}{2^{\lfloor\log_2(n)\rfloor}}\frac{a_n}{b_n}</math> with some odd integers <math display="inline">a_n</math> and <math display="inline">b_n</math>. As a consequence of [[Wolstenholme's theorem]], for any prime number <math>p \ge 5</math> the numerator of <math>H_{p-1}</math> is divisible by <math display="inline">p^2</math>. Furthermore, Eisenstein<ref>{{Cite journal|last=Eisenstein|first=Ferdinand Gotthold Max|year=1850|title=Eine neue Gattung zahlentheoretischer Funktionen, welche von zwei Elementen ahhängen und durch gewisse lineare Funktional-Gleichungen definirt werden|journal=Berichte Königl. Preuβ. Akad. Wiss. Berlin|volume=15|pages=36–42}}</ref> proved that for all odd prime number <math display="inline">p</math> it holds <math display="block">H_{(p-1)/2} \equiv -2q_p(2) \pmod p</math> where <math display="inline">q_p(2) = (2^{p-1} -1)/p</math> is a [[Fermat quotient]], with the consequence that <math display="inline">p</math> divides the numerator of <math>H_{(p-1)/2}</math> if and only if <math display="inline">p</math> is a [[Wieferich prime]]. In 1991, Eswarathasan and Levine<ref>{{Cite journal|last1=Eswarathasan|first1=Arulappah|last2=Levine|first2=Eugene|year=1991|title=p-integral harmonic sums|journal=Discrete Mathematics|volume=91|issue=3|pages=249–257|doi=10.1016/0012-365X(90)90234-9|doi-access=free}}</ref> defined <math>J_p</math> as the set of all positive integers <math>n</math> such that the numerator of <math>H_n</math> is divisible by a prime number <math>p.</math> They proved that <math display="block">\{p-1,p^2-p,p^2-1\}\subseteq J_p</math> for all prime numbers <math>p \ge 5,</math> and they defined ''harmonic primes'' to be the primes <math display="inline">p</math> such that <math>J_p</math> has exactly 3 elements. Eswarathasan and Levine also conjectured that <math>J_p</math> is a [[finite set]] for all primes <math>p,</math> and that there are infinitely many harmonic primes. Boyd<ref>{{Cite journal|last=Boyd|first=David W.|year=1994|title=A p-adic study of the partial sums of the harmonic series|url=http://projecteuclid.org/euclid.em/1048515811|journal=Experimental Mathematics|volume=3|issue=4|pages=287–302|doi=10.1080/10586458.1994.10504298|citeseerx=10.1.1.56.7026}}</ref> verified that <math>J_p</math> is finite for all prime numbers up to <math>p = 547</math> except 83, 127, and 397; and he gave a heuristic suggesting that the [[Natural density|density]] of the harmonic primes in the set of all primes should be <math>1/e</math>. Sanna<ref>{{Cite journal|last=Sanna|first=Carlo|year=2016|title=On the p-adic valuation of harmonic numbers|journal=Journal of Number Theory|volume=166|pages=41–46|doi=10.1016/j.jnt.2016.02.020|hdl=2318/1622121|url=https://iris.unito.it/bitstream/2318/1622121/1/padicharm.pdf|doi-access=free}}</ref> showed that <math>J_p</math> has zero [[Natural density|asymptotic density]], while Bing-Ling Wu and Yong-Gao Chen<ref>{{Cite journal|last1=Chen|first1=Yong-Gao|last2=Wu|first2=Bing-Ling|year=2017|title=On certain properties of harmonic numbers|journal=Journal of Number Theory|volume=175|pages=66–86|doi=10.1016/j.jnt.2016.11.027|doi-access=}}</ref> proved that the number of elements of <math>J_p</math> not exceeding <math>x</math> is at most <math>3x^{\frac{2}{3}+\frac1{25 \log p}}</math>, for all <math>x \geq 1</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)