Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hereditarily finite set
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Ackermann coding=== In 1937, [[Wilhelm Ackermann]] introduced an encoding of hereditarily finite sets as natural numbers.<ref name=ackermann>{{cite journal| last=Ackermann|first=Wilhelm| title=Die Widerspruchsfreiheit der allgemeinen Mengenlehre| journal=[[Mathematische Annalen]]| year=1937|volume=114|pages=305–315| url=http://www.digizeitschriften.de/dms/img/?PPN=PPN235181684_0114&DMDID=dmdlog23| access-date=2012-01-09|doi=10.1007/bf01594179 |s2cid=120576556}}</ref><ref>{{cite journal| last=Kirby|first=Laurence| title=Finitary Set Theory| journal=Notre Dame Journal of Formal Logic| year=2009|volume=50|issue=3|pages=227–244|doi=10.1215/00294527-2009-009 |doi-access=free}}</ref><ref>{{cite book | last1 = Omodeo | first1 = Eugenio G. | last2 = Policriti | first2 = Alberto | last3 = Tomescu | first3 = Alexandru I. | contribution = 3.3: The Ackermann encoding of hereditarily finite sets | doi = 10.1007/978-3-319-54981-1 | isbn = 978-3-319-54980-4 | mr = 3558535 | pages = 70–71 | publisher = Springer | title = On Sets and Graphs: Perspectives on Logic and Combinatorics | year = 2017}}</ref> It is defined by a function <math>f\colon H_{\aleph_0} \to \omega</math> that maps each hereditarily finite set to a natural number, given by the following recursive definition: {{bi|left=1.6|<math>\displaystyle f(a) = \sum_{b \in a} 2^{f(b)}</math>}} For example, the empty set <math>\{\}</math> contains no members, and is therefore mapped to an [[empty sum]], that is, the number [[zero]]. On the other hand, a set with distinct members <math>a, b, c, \dots</math> is mapped to <math>2^{f(a)} + 2^{f(b)} + 2^{f(c)} + \ldots</math>. The inverse is given by {{bi|left=1.6|<math>\displaystyle f^{-1}\colon\omega\to H_{\aleph_0}</math>}} {{bi|left=1.6|<math>\displaystyle f^{-1}(i) = \{f^{-1}(j) \mid \text{BIT}(i, j) = 1\}</math>}} where BIT denotes the [[BIT predicate]]. The Ackermann coding can be used to construct a model of finitary set theory in the natural numbers. More precisely, <math>(\mathbb{N}, \text{BIT}^\top)</math> (where <math>\text{BIT}^\top</math> is the [[converse relation]] of <math>\text{BIT}</math>, swapping its two arguments) models [[Zermelo–Fraenkel set theory]] ZF without the [[axiom of infinity]]. Here, each natural number models a set, and the <math>\text{BIT}</math> relation models the membership relation between sets.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)