Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Hilbert transform
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Table of selected Hilbert transforms == In the following table, the [[frequency]] parameter <math>\omega</math> is real. {| class="wikitable" |- ! Signal <br/><math>u(t)</math> ! Hilbert transform<ref group="fn">Some authors (e.g., Bracewell) use our {{math|βH}} as their definition of the forward transform. A consequence is that the right column of this table would be negated.</ref> <br/><math>\operatorname{H}(u)(t)</math> |- | align="center"| <math>\sin(\omega t + \varphi)</math> <ref group="fn" name="ex02">The Hilbert transform of the sin and cos functions can be defined by taking the principal value of the integral at infinity. This definition agrees with the result of defining the Hilbert transform distributionally.</ref> || align="center" | <math>\begin{array}{lll} \sin\left(\omega t + \varphi - \tfrac{\pi}{2}\right)=-\cos\left(\omega t + \varphi \right), \quad \omega > 0\\ \sin\left(\omega t + \varphi + \tfrac{\pi}{2}\right)=\cos\left(\omega t + \varphi \right), \quad \omega < 0 \end{array}</math> |- | align="center"| <math> \cos(\omega t + \varphi) </math> <ref group="fn" name="ex02"/> || align="center" | <math>\begin{array}{lll} \cos\left(\omega t + \varphi - \tfrac{\pi}{2}\right)=\sin\left(\omega t + \varphi\right), \quad \omega > 0\\ \cos\left(\omega t + \varphi + \tfrac{\pi}{2}\right)=-\sin\left(\omega t + \varphi\right), \quad \omega < 0 \end{array}</math> |- | align="center"| <math> e^{i \omega t} </math> || align="center"| <math>\begin{array}{lll} e^{i\left(\omega t - \tfrac{\pi}{2}\right)}, \quad \omega > 0\\ e^{i\left(\omega t + \tfrac{\pi}{2}\right)}, \quad \omega < 0 \end{array}</math> |- | align="center"| <math> e^{-i \omega t} </math> || align="center"| <math>\begin{array}{lll} e^{-i\left(\omega t - \tfrac{\pi}{2}\right)}, \quad \omega > 0\\ e^{-i\left(\omega t + \tfrac{\pi}{2}\right)}, \quad \omega < 0 \end{array}</math> |- | align="center"| <math> 1 \over t^2 + 1 </math> || align="center"| <math> t \over t^2 + 1 </math> |- | align="center"| <math> e^{-t^2} </math> || align="center"| <math> \frac{2}{\sqrt{\pi\,}} F(t) </math><br/>(see [[Dawson function]]) |- | align="center"| '''[[Sinc function]]''' <br /> <math> \sin(t) \over t </math> || align="center"| <math> 1 - \cos(t)\over t </math> |- | align="center"| '''[[Dirac delta function]]''' <br /><math> \delta(t) </math> || align="center"| <math> {1 \over \pi t} </math> |- | align="center"| '''[[Indicator function|Characteristic function]]''' <br /> <math> \chi_{[a,b]}(t) </math> || align="center"| <math>{ \frac{1}{\,\pi\,}\ln \left\vert \frac{t - a}{t - b}\right\vert }</math> |} '''Notes''' <references group="fn"/> An extensive table of Hilbert transforms is available.{{sfn|King|2009b}} Note that the Hilbert transform of a constant is zero.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)