Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Holonomy
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Monodromy=== The holonomy bundle ''H''(''p'') is a principal bundle for <math>\operatorname{Hol}_p(\omega),</math> and so also admits an action of the restricted holonomy group <math>\operatorname{Hol}^0_p(\omega)</math> (which is a normal subgroup of the full holonomy group). The discrete group <math>\operatorname{Hol}_p(\omega)/\operatorname{Hol}^0_p(\omega)</math> is called the [[monodromy group]] of the connection; it acts on the quotient bundle <math>H(p)/ \operatorname{Hol}^0_p(\omega).</math> There is a surjective homomorphism <math>\varphi: \pi_1 \to \operatorname{Hol}_p(\omega)/\operatorname{Hol}^0_p(\omega),</math> so that <math>\varphi\left(\pi_1(M)\right)</math> acts on <math>H(p)/ \operatorname{Hol}^0_p(\omega).</math> This action of the fundamental group is a '''monodromy representation''' of the fundamental group.<ref>{{harvnb|Sharpe|1997|loc=Β§3.7}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)