Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Householder transformation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Example==== consider the normalization of a vector of 1's <math>\vec v=\frac{1}{\sqrt{2}}\begin{bmatrix} 1\\1 \end{bmatrix}</math> Then the Householder matrix corresponding to this vector is <math>P_v=\begin{bmatrix}1&0\\0&1\end{bmatrix}-2(\frac{1}{\sqrt{2}}\begin{bmatrix} 1\\1 \end{bmatrix})(\frac{1}{\sqrt{2}}\begin{bmatrix} 1&1 \end{bmatrix})</math> <math>=\begin{bmatrix}1&0\\0&1\end{bmatrix}-\begin{bmatrix} 1\\1 \end{bmatrix}\begin{bmatrix} 1&1 \end{bmatrix}</math> <math>=\begin{bmatrix}1&0\\0&1\end{bmatrix}-\begin{bmatrix}1&1\\1&1\end{bmatrix}</math> <math>=\begin{bmatrix}0&-1\\-1&0\end{bmatrix}</math> Note that if we have a vector representing a coordinate in the 2D plane <math>\begin{bmatrix}x\\y\end{bmatrix}</math> Then in this case <math>P_v</math> flips and negates the x and y coordinates, in other words <math>P_v\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}-y\\-x\end{bmatrix}</math> Which corresponds to reflecting the vector across the line <math>y=-x</math>, which our original vector <math>v</math> is normal to.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)