Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Imaginary unit
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Root of {{math|''x''<sup>2</sup> + 1}}=== [[Polynomial]]s (weighted sums of the powers of a variable) are a basic tool in algebra. Polynomials whose [[coefficient]]s are real numbers form a [[ring (mathematics)|ring]], denoted <math>\R[x],</math> an algebraic structure with addition and multiplication and sharing many properties with the ring of [[integer]]s. The polynomial <math>x^2 + 1</math> has no real-number [[root of a polynomial|roots]], but the set of all real-coefficient polynomials divisible by <math>x^2 + 1</math> forms an [[ideal (ring theory)|ideal]], and so there is a [[Polynomial ring#Quotient ring|quotient ring]] <math>\reals[x] / \langle x^2 + 1\rangle.</math> This quotient ring is [[isomorphism|isomorphic]] to the complex numbers, and the variable <math>x</math> expresses the imaginary unit.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)