Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Implicit function theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Statement of the theorem == Let <math>f: \R^{n+m} \to \R^m</math> be a [[continuously differentiable function]], and let <math>\R^{n+m}</math> have coordinates <math>(\textbf{x}, \textbf{y})</math>. Fix a point <math>(\textbf{a}, \textbf{b}) = (a_1,\dots,a_n, b_1,\dots, b_m)</math> with <math>f(\textbf{a}, \textbf{b}) = \mathbf{0}</math>, where <math>\mathbf{0} \in \R^m</math> is the zero vector. If the [[Jacobian matrix]] (this is the right-hand panel of the Jacobian matrix shown in the previous section): <math display="block">J_{f, \mathbf{y}} (\mathbf{a}, \mathbf{b}) = \left [ \frac{\partial f_i}{\partial y_j} (\mathbf{a}, \mathbf{b}) \right ]</math> is [[invertible]], then there exists an open set <math>U \subset \R^n</math> containing <math>\textbf{a}</math> such that there exists a unique function <math>g: U \to \R^m</math> such that {{nowrap|<math> g(\mathbf{a}) = \mathbf{b}</math>,}} and {{nowrap|<math> f(\mathbf{x}, g(\mathbf{x})) = \mathbf{0} ~ \text{for all} ~ \mathbf{x}\in U</math>.}} Moreover, <math>g</math> is continuously differentiable and, denoting the left-hand panel of the Jacobian matrix shown in the previous section as: <math display="block"> J_{f, \mathbf{x}} (\mathbf{a}, \mathbf{b}) = \left [ \frac{\partial f_i}{\partial x_j} (\mathbf{a}, \mathbf{b}) \right ], </math> the Jacobian matrix of partial derivatives of <math>g</math> in <math>U</math> is given by the [[matrix product]]:<ref>{{Cite journal |first=Oswaldo |last=de Oliveira |title=The Implicit and Inverse Function Theorems: Easy Proofs |journal=Real Anal. Exchange |volume=39 |issue=1 |year=2013 |doi=10.14321/realanalexch.39.1.0207 |pages=214β216 |s2cid=118792515 |arxiv=1212.2066 }}</ref> <math display="block"> \left[\frac{\partial g_i}{\partial x_j} (\mathbf{x})\right]_{m\times n} =- \left [ J_{f, \mathbf{y}}(\mathbf{x}, g(\mathbf{x})) \right ]_{m \times m} ^{-1} \, \left [ J_{f, \mathbf{x}}(\mathbf{x}, g(\mathbf{x})) \right ]_{m \times n} </math> For a proof, see [[Inverse function theorem#Implicit_function_theorem]]. Here, the two-dimensional case is detailed. ===Higher derivatives=== If, moreover, <math>f</math> is [[analytic function|analytic]] or continuously differentiable <math>k</math> times in a neighborhood of <math>(\textbf{a}, \textbf{b})</math>, then one may choose <math>U</math> in order that the same holds true for <math>g</math> inside <math>U</math>. <ref>{{Cite book |first1=K. | last1=Fritzsche |first2=H. |last2=Grauert |year=2002 |url=https://books.google.com/books?id=jSeRz36zXIMC&pg=PA34 |title=From Holomorphic Functions to Complex Manifolds |publisher=Springer |page=34 |isbn=9780387953953 }}</ref> In the analytic case, this is called the '''analytic implicit function theorem'''.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)