Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Integer partition
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Partition function== [[File:Euler_partition_function.svg|thumb|upright|link={{filepath:Euler_partition_function.svg}}|Using Euler's method to find ''p''(40): A ruler with plus and minus signs (grey box) is slid downwards, the relevant parts added or subtracted. The positions of the signs are given by differences of alternating natural (blue) and odd (orange) numbers. In [{{filepath:Euler_partition_function.svg}} the SVG file,] hover over the image to move the ruler.]] {{main|Partition function (number theory)}} The [[Partition function (number theory)|partition function]] <math>p(n)</math> counts the partitions of a non-negative integer <math>n</math>. For instance, <math>p(4)=5</math> because the integer <math>4</math> has the five partitions <math>1+1+1+1</math>, <math>1+1+2</math>, <math>1+3</math>, <math>2+2</math>, and <math>4</math>. The values of this function for <math>n=0,1,2,\dots</math> are: :1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1958, 2436, 3010, 3718, 4565, 5604, ... {{OEIS|id=A000041}}. The [[generating function]] of <math>p</math> is :<math>\sum_{n=0}^{\infty}p(n)q^n=\prod_{j=1}^{\infty}\sum_{i=0}^{\infty}q^{ji}=\prod_{j=1}^{\infty}(1-q^j)^{-1}.</math> No [[closed-form expression]] for the partition function is known, but it has both [[asymptotic analysis|asymptotic expansions]] that accurately approximate it and [[recurrence relation]]s by which it can be calculated exactly. It grows as an [[exponential function]] of the [[square root]] of its argument.,{{sfn|Andrews|1976|p=69}} as follows: :<math>p(n) \sim \frac {1} {4n\sqrt3} \exp\left({\pi \sqrt {\frac{2n}{3}}}\right)</math> as <math>n \to \infty</math> In 1937, [[Hans Rademacher]] found a way to represent the partition function <math>p(n)</math> by the [[convergent series]] <math display="block">p(n) = \frac{1}{\pi \sqrt{2}} \sum_{k=1}^\infty A_k(n)\sqrt{k} \cdot \frac{d}{dn} \left({ \frac {1} {\sqrt{n-\frac{1}{24}}} \sinh \left[ {\frac{\pi}{k} \sqrt{\frac{2}{3}\left(n-\frac{1}{24}\right)}}\,\,\,\right] }\right)</math> where <math display="block">A_k(n) = \sum_{0 \le m < k, \; (m, k) = 1} e^{ \pi i \left( s(m, k) - 2 nm/k \right) }.</math> and <math>s(m,k)</math> is the [[Dedekind sum]]. The [[multiplicative inverse]] of its generating function is the [[Euler function]]; by Euler's [[pentagonal number theorem]] this function is an alternating sum of [[pentagonal number]] powers of its argument. :<math>p(n)=p(n-1)+p(n-2)-p(n-5)-p(n-7)+\cdots</math> [[Srinivasa Ramanujan]] discovered that the partition function has nontrivial patterns in [[modular arithmetic]], now known as [[Ramanujan's congruences]]. For instance, whenever the decimal representation of <math>n</math> ends in the digit 4 or 9, the number of partitions of <math>n</math> will be divisible by 5.{{sfn|Hardy|Wright|2008|p=380}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)