Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Integral transform
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Table of transforms== {| class="wikitable" |+ Table of integral transforms |- ! scope="col" | Transform ! scope="col" | Symbol ! scope="col" | ''K'' ! scope="col" | ''f''(''t'') ! scope="col" | ''t''<sub>1</sub> ! scope="col" | ''t''<sub>2</sub> ! scope="col" | ''K''<sup>β1</sup> ! scope="col" | ''u''<sub>1</sub> ! scope="col" | ''u''<sub>2</sub> |- | [[Abel transform]] | F, f | <math>\frac{2t}{\sqrt{t^2-u^2}}</math> | | <math>u</math> | <math>\infty</math> | <math>\frac{-1}{\pi\sqrt{u^2\!-\!t^2}}\frac{d}{du}</math> <ref> Assuming the Abel transform is not discontinuous at <math>u</math>.</ref> | ''t'' | <math>\infty</math> |- | Associated Legendre transform | <math>\mathcal{J}_{n,m}</math> | <math>(1-x^2)^{-m/2}P^{m}_n(x)</math> | | <math>-1</math> | <math>1</math> | | <math>0</math> | <math>\infty</math> |- | [[Fourier transform]] | <math>\mathcal{F}</math> | <math>e^{-2\pi iut}</math> | <math>L_1</math> | <math>-\infty</math> | <math>\infty</math> | <math>e^{2\pi iut}</math> | <math>-\infty</math> | <math>\infty</math> |- | [[Fourier sine transform]] | <math>\mathcal{F}_s</math> | <math>\sqrt{\frac{2}{\pi}} \sin(ut)</math> | on <math>[0,\infty)</math>, real-valued | <math>0</math> | <math>\infty</math> | <math>\sqrt{\frac{2}{\pi}} \sin(ut)</math> | <math>0</math> | <math>\infty</math> |- | [[Fourier cosine transform]] | <math>\mathcal{F}_c</math> | <math>\sqrt{\frac{2}{\pi}} \cos(ut)</math> | on <math>[0,\infty)</math>, real-valued | <math>0</math> | <math>\infty</math> | <math>\sqrt{\frac{2}{\pi}} \cos(ut)</math> | <math>0</math> | <math>\infty</math> |- | [[Hankel transform]] | | <math>t\,J_\nu(ut)</math> | | <math>0</math> | <math>\infty</math> | <math>u\,J_\nu(ut)</math> | <math>0</math> | <math>\infty</math> |- | [[Hartley transform]] | <math>\mathcal{H}</math> | <math>\frac{\cos(ut)+\sin(ut)}{\sqrt{2 \pi}}</math> | | <math>-\infty</math> | <math>\infty</math> | <math>\frac{\cos(ut)+\sin(ut)}{\sqrt{2 \pi}}</math> | <math>-\infty</math> | <math>\infty</math> |- | [[Hermite transform]] | <math>H</math> | <math>e^{-x^2} H_n(x)</math> | | <math>-\infty</math> | <math>\infty</math> | | <math>0</math> | <math>\infty</math> |- | [[Hilbert transform]] | <math>\mathcal{H}il</math> | <math>\frac{1}{\pi}\frac{1}{u-t}</math> | | <math>-\infty</math> | <math>\infty</math> | <math>\frac{1}{\pi}\frac{1}{u-t}</math> | <math>-\infty</math> | <math>\infty</math> |- | [[Jacobi transform]] | <math>J</math> | <math>(1-x)^\alpha\ (1+x)^\beta \ P_n^{\alpha,\beta}(x)</math> | | <math>-1</math> | <math>1</math> | | <math>0</math> | <math>\infty</math> |- | [[Laguerre transform]] | <math>L</math> | <math>e^{-x}\ x^\alpha \ L_n^{\alpha}(x)</math> | | <math>0</math> | <math>\infty</math> | | <math>0</math> | <math>\infty</math> |- | [[Laplace transform]] | <math>\mathcal{L}</math> | <math>e^{-ut}</math> | | <math>0</math> | <math>\infty</math> | <math>\frac{e^{ut}}{2\pi i}</math> | <math>c\!-\!i\infty</math> | <math>c\!+\!i\infty</math> |- | [[Legendre transform (integral transform)|Legendre transform]] | <math>\mathcal{J}</math> | <math>P_n(x)\,</math> | | <math>-1</math> | <math>1</math> | | <math>0</math> | <math>\infty</math> |- | [[Mellin transform]] | <math>\mathcal{M}</math> | <math>t^{u-1}</math> | | <math>0</math> | <math>\infty</math> | <math>\frac{t^{-u}}{2\pi i}\,</math><ref> Some conditions apply, see [[Mellin inversion theorem]] for details. </ref> | <math>c\!-\!i\infty</math> | <math>c\!+\!i\infty</math> |- | [[Two-sided Laplace transform|Two-sided Laplace<br>transform]] | <math>\mathcal{B}</math> | <math>e^{-ut}</math> | | <math>-\infty</math> | <math>\infty</math> | <math>\frac{e^{ut}}{2\pi i}</math> | <math>c\!-\!i\infty</math> | <math>c\!+\!i\infty</math> |- | [[Poisson kernel]] | | <math>\frac{1-r^2}{1-2r\cos\theta +r^2}</math> | | <math>0</math> | <math>2\pi</math> | | | |- | [[Radon transform]] | RΖ | <math> \delta(x\cos\theta+y\sin\theta-t)</math> | | <math>-\infty</math> | <math>\infty</math> | | | |- | [[Weierstrass transform]] | <math>\mathcal{W}</math> | <math>\frac{e^{-\frac{(u-t)^2}{4}}}{\sqrt{4\pi}}\,</math> | | <math>-\infty</math> | <math>\infty</math> | <math>\frac{e^{\frac{(u-t)^2}{4}}}{i\sqrt{4\pi}}</math> | <math>c\!-\!i\infty</math> | <math>c\!+\!i\infty</math> |- | [[X-ray transform]] | XΖ | | | <math>-\infty</math> | <math>\infty</math> | | | |} In the limits of integration for the inverse transform, ''c'' is a constant which depends on the nature of the transform function. For example, for the one and two-sided Laplace transform, ''c'' must be greater than the largest real part of the zeroes of the transform function. Note that there are alternative notations and conventions for the Fourier transform.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)