Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Intermediate value theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Proof version A=== <!-- This section is linked from [[Continuity property]] --> The theorem may be proven as a consequence of the [[completeness (order theory)|completeness]] property of the real numbers as follows:<ref>Essentially follows {{cite book |title=Foundations of Analysis|first=Douglas A.|last=Clarke|publisher=Appleton-Century-Crofts | year=1971|page=284}}</ref> We shall prove the first case, <math>f(a) < u < f(b)</math>. The second case is similar. Let <math>S</math> be the set of all <math>x \in [a,b]</math> such that <math>f(x)<u</math>. Then <math>S</math> is non-empty since <math>a</math> is an element of <math>S</math>. Since <math>S</math> is non-empty and bounded above by <math>b</math>, by completeness, the [[supremum]] <math>c=\sup S</math> exists. That is, <math>c</math> is the smallest number that is greater than or equal to every member of <math>S</math>. Note that, due to the continuity of <math>f</math> at <math>a</math>, we can keep <math>f(x)</math> within any <math>\varepsilon>0</math> of <math>f(a)</math> by keeping <math>x</math> sufficiently close to <math>a</math>. Since <math>f(a)<u</math> is a strict inequality, consider the implication when <math>\varepsilon</math> is the distance between <math>u</math> and <math>f(a)</math>. No <math>x</math> sufficiently close to <math>a</math> can then make <math>f(x)</math> greater than or equal to <math>u</math>, which means there are values greater than <math>a</math> in <math>S</math>. A more detailed proof goes like this: Choose <math>\varepsilon=u-f(a)>0</math>. Then <math>\exists \delta>0</math> such that <math>\forall x \in [a,b]</math>, <math display="block">|x-a|<\delta \implies |f(x)-f(a)|<u-f(a) \implies f(x)<u.</math>Consider the interval <math>[a,\min(a+\delta,b))=I_1</math>. Notice that <math>I_1 \subseteq [a,b]</math> and every <math>x \in I_1</math> satisfies the condition <math>|x-a|<\delta</math>. Therefore for every <math>x \in I_1</math> we have <math>f(x)<u</math>. Hence <math>c</math> cannot be <math>a</math>. Likewise, due to the continuity of <math>f</math> at <math>b</math>, we can keep <math>f(x)</math> within any <math>\varepsilon > 0</math> of <math>f(b)</math> by keeping <math>x</math> sufficiently close to <math>b</math>. Since <math>u<f(b)</math> is a strict inequality, consider the similar implication when <math>\varepsilon</math> is the distance between <math>u</math> and <math>f(b)</math>. Every <math>x</math> sufficiently close to <math>b</math> must then make <math>f(x)</math> greater than <math>u</math>, which means there are values smaller than <math>b</math> that are upper bounds of <math>S</math>. A more detailed proof goes like this: Choose <math>\varepsilon=f(b)-u>0</math>. Then <math>\exists \delta>0</math> such that <math>\forall x \in [a,b]</math>, <math display="block">|x-b|<\delta \implies |f(x)-f(b)|<f(b)-u \implies f(x)>u.</math>Consider the interval <math>(\max(a,b-\delta),b]=I_2</math>. Notice that <math>I_2 \subseteq [a,b]</math> and every <math>x \in I_2</math> satisfies the condition <math>|x-b|<\delta</math>. Therefore for every <math>x \in I_2</math> we have <math>f(x)>u</math>. Hence <math>c</math> cannot be <math>b</math>. With <math>c \neq a</math> and <math>c \neq b</math>, it must be the case <math>c \in (a,b)</math>. Now we claim that <math>f(c)=u</math>. Fix some <math>\varepsilon > 0</math>. Since <math>f</math> is continuous at <math>c</math>, <math>\exists \delta_1>0</math> such that <math>\forall x \in [a,b]</math>, <math>|x-c|<\delta_1 \implies |f(x) - f(c)| < \varepsilon</math>. Since <math>c \in (a,b)</math> and <math>(a,b)</math> is open, <math>\exists \delta_2>0</math> such that <math>(c-\delta_2,c+\delta_2) \subseteq (a,b)</math>. Set <math>\delta= \min(\delta_1,\delta_2)</math>. Then we have <math display="block">f(x)-\varepsilon<f(c)<f(x)+\varepsilon</math> for all <math>x\in(c-\delta,c+\delta)</math>. By the properties of the supremum, there exists some <math>a^*\in (c-\delta,c]</math> that is contained in <math>S</math>, and so <math display="block">f(c)<f(a^*)+\varepsilon<u+\varepsilon.</math> Picking <math>a^{**}\in(c,c+\delta)</math>, we know that <math>a^{**}\not\in S</math> because <math>c</math> is the supremum of <math>S</math>. This means that <math display="block">f(c)>f(a^{**})-\varepsilon \geq u-\varepsilon.</math> Both inequalities <math display="block">u-\varepsilon<f(c)< u+\varepsilon</math> are valid for all <math>\varepsilon > 0</math>, from which we deduce <math>f(c) = u</math> as the only possible value, as stated.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)