Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Interpolation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Spline interpolation=== [[File:Interpolation example spline.svg|right|thumb|230px|Plot of the data with spline interpolation applied]] {{Main|Spline interpolation}} Linear interpolation uses a linear function for each of intervals [''x''<sub>''k''</sub>,''x''<sub>''k+1''</sub>]. Spline interpolation uses low-degree polynomials in each of the intervals, and chooses the polynomial pieces such that they fit smoothly together. The resulting function is called a spline. For instance, the [[natural cubic spline]] is [[piecewise]] cubic and twice continuously differentiable. Furthermore, its second derivative is zero at the end points. The natural cubic spline interpolating the points in the table above is given by : <math> f(x) = \begin{cases} -0.1522 x^3 + 0.9937 x, & \text{if } x \in [0,1], \\ -0.01258 x^3 - 0.4189 x^2 + 1.4126 x - 0.1396, & \text{if } x \in [1,2], \\ 0.1403 x^3 - 1.3359 x^2 + 3.2467 x - 1.3623, & \text{if } x \in [2,3], \\ 0.1579 x^3 - 1.4945 x^2 + 3.7225 x - 1.8381, & \text{if } x \in [3,4], \\ 0.05375 x^3 -0.2450 x^2 - 1.2756 x + 4.8259, & \text{if } x \in [4,5], \\ -0.1871 x^3 + 3.3673 x^2 - 19.3370 x + 34.9282, & \text{if } x \in [5,6]. \end{cases} </math> In this case we get ''f''(2.5) = 0.5972. Like polynomial interpolation, spline interpolation incurs a smaller error than linear interpolation, while the interpolant is smoother and easier to evaluate than the high-degree polynomials used in polynomial interpolation. However, the global nature of the basis functions leads to ill-conditioning. This is completely mitigated by using splines of compact support, such as are implemented in Boost.Math and discussed in Kress.<ref>{{cite book|last1=Kress|first1=Rainer|title=Numerical Analysis|url=https://archive.org/details/springer_10.1007-978-1-4612-0599-9|year=1998|publisher=Springer |isbn=9781461205999}}</ref> {{Clear}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)