Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Intersection number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Snapper–Kleiman definition of intersection number == There is an approach to intersection number, introduced by Snapper in 1959-60 and developed later by Cartier and Kleiman, that defines an intersection number as an Euler characteristic. Let ''X'' be a scheme over a scheme ''S'', Pic(''X'') the [[Picard group]] of ''X'' and '''''G''''' the Grothendieck group of the category of [[coherent sheaf|coherent sheaves]] on ''X'' whose support is [[proper morphism|proper]] over an [[Artinian subscheme]] of ''S''. For each ''L'' in Pic(''X''), define the endomorphism ''c''<sub>1</sub>(''L'') of '''''G''''' (called the [[first Chern class]] of ''L'') by :<math>c_1(L)F= F - L^{-1} \otimes F.</math> It is additive on '''''G''''' since tensoring with a line bundle is exact. One also has: *<math>c_1(L_1)c_1(L_2) = c_1(L_1) + c_1(L_2) - c_1(L_1 \otimes L_2)</math>; in particular, <math>c_1(L_1)</math> and <math>c_1(L_2)</math> commute. *<math>c_1(L)c_1(L^{-1}) = c_1(L) + c_1(L^{-1}).</math> *<math>\dim \operatorname{supp} c_1(L)F \le \dim \operatorname{supp} F - 1</math> (this is nontrivial and follows from a [[dévissage argument]].) The intersection number :<math>L_1 \cdot {\dots} \cdot L_r</math> of line bundles ''L''<sub>''i''</sub>'s is then defined by: :<math>L_1 \cdot {\dots} \cdot L_r \cdot F = \chi(c_1(L_1) \cdots c_1(L_r) F)</math> where χ denotes the [[Euler characteristic]]. Alternatively, one has by induction: :<math>L_1 \cdot {\dots} \cdot L_r \cdot F = \sum_0^r (-1)^i \chi(\wedge^i (\oplus_0^r L_j^{-1}) \otimes F).</math> Each time ''F'' is fixed, <math>L_1 \cdot {\dots} \cdot L_r \cdot F</math> is a symmetric functional in ''L''<sub>''i''</sub>'s. If ''L''<sub>''i''</sub> = ''O''<sub>''X''</sub>(''D''<sub>''i''</sub>) for some [[Cartier divisor]]s ''D''<sub>''i''</sub>'s, then we will write <math>D_1 \cdot {\dots } \cdot D_r</math> for the intersection number. Let <math>f:X \to Y</math> be a morphism of ''S''-schemes, <math>L_i, 1 \le i \le m</math> line bundles on ''X'' and ''F'' in '''G''' with <math>m \ge \dim \operatorname{supp}F</math>. Then :<math>f^*L_1 \cdots f^* L_m \cdot F = L_1 \cdots L_m \cdot f_* F</math>.<ref>{{harvnb|Kollár|1996|loc=Ch VI. Proposition 2.11}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)