Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Inverse trigonometric functions
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Solutions to elementary trigonometric equations === Each of the trigonometric functions is periodic in the real part of its argument, running through all its values twice in each interval of <math>2 \pi:</math> * Sine and cosecant begin their period at <math display="inline">2 \pi k-\frac{\pi}{2}</math> (where <math>k</math> is an integer), finish it at <math display="inline">2 \pi k+\frac{\pi}{2},</math> and then reverse themselves over <math display="inline">2 \pi k+\frac{\pi}{2}</math> to <math display="inline">2 \pi k+\frac{3\pi}{2}.</math> * Cosine and secant begin their period at <math>2 \pi k,</math> finish it at <math>2 \pi k+\pi.</math> and then reverse themselves over <math>2 \pi k+\pi</math> to <math>2 \pi k+2 \pi.</math> * Tangent begins its period at <math display="inline">2 \pi k-\frac{\pi}{2},</math> finishes it at <math display="inline">2 \pi k+\frac{\pi}{2},</math> and then repeats it (forward) over <math display="inline">2 \pi k+\frac{\pi}{2}</math> to <math display="inline">2 \pi k+\frac{3 \pi}{2}.</math> * Cotangent begins its period at <math>2 \pi k, </math> finishes it at <math>2 \pi k+\pi,</math> and then repeats it (forward) over <math>2 \pi k+\pi</math> to <math>2 \pi k+2 \pi.</math> This periodicity is reflected in the general inverses, where <math>k</math> is some integer. The following table shows how inverse trigonometric functions may be used to solve equalities involving the six standard trigonometric functions. It is assumed that the given values <math>\theta,</math> <math>r,</math> <math>s,</math> <math>x,</math> and <math>y</math> all lie within appropriate ranges so that the relevant expressions below are [[well-defined]]. Note that "for some <math>k \in \Z</math>" is just another way of saying "for some [[integer]] <math>k.</math>" The symbol <math>\,\iff\,</math> is [[logical equality]] and indicates that if the left hand side is true then so is the right hand side and, conversely, if the right hand side is true then so is the left hand side (see this footnote<ref group="note">The expression "LHS <math>\,\iff\,</math> RHS" indicates that {{em|either}} (a) the left hand side (i.e. LHS) and right hand side (i.e. RHS) are {{em|both}} true, or else (b) the left hand side and right hand side are {{em|both}} false; there is {{em|no}} option (c) (e.g. it is {{em|not}} possible for the LHS statement to be true and also simultaneously for the RHS statement to be false), because otherwise "LHS <math>\,\iff\,</math> RHS" would not have been written. <br/> To clarify, suppose that it is written "LHS <math>\,\iff\,</math> RHS" where LHS (which abbreviates ''left hand side'') and RHS are both statements that can individually be either be true or false. For example, if <math>\theta</math> and <math>s</math> are some given and fixed numbers and if the following is written: <math displaystyle="block">\tan \theta = s \,\iff\, \theta = \arctan(s)+\pi k \quad \text{ for some } k \in \Z</math> then LHS is the statement "<math>\tan \theta = s</math>". Depending on what specific values <math>\theta</math> and <math>s</math> have, this LHS statement can either be true or false. For instance, LHS is true if <math>\theta = 0</math> and <math>s = 0</math> (because in this case <math>\tan \theta = \tan 0 = s</math>) but LHS is false if <math>\theta = 0</math> and <math>s = 2</math> (because in this case <math>\tan \theta = \tan 0 = s</math> which is not equal to <math>s = 2</math>); more generally, LHS is false if <math>\theta = 0</math> and <math>s \neq 0.</math> Similarly, RHS is the statement "<math>\theta = \arctan(s)+\pi k</math> for some <math>k \in \Z</math>". The RHS statement can also either true or false (as before, whether the RHS statement is true or false depends on what specific values <math>\theta</math> and <math>s</math> have). The logical equality symbol <math>\,\iff\,</math> means that (a) if the LHS statement is true then the RHS statement is also {{em|necessarily}} true, and moreover (b) if the LHS statement is false then the RHS statement is also {{em|necessarily}} false. Similarly, <math>\,\iff\,</math> {{em|also}} means that (c) if the RHS statement is true then the LHS statement is also {{em|necessarily}} true, and moreover (d) if the RHS statement is false then the LHS statement is also {{em|necessarily}} false.</ref> for more details and an example illustrating this concept). {| class="wikitable" style="border: none;" |+ |- ! Equation !! [[if and only if]] !! colspan="7" | Solution |- | style="text-align: center; padding: 0.5% 2em 0.5% 2em;" | <math>\sin \theta = y</math> | style="text-align: center;" |[[Logical equality|<math>\iff</math>]] | style='border-style: solid none solid none; text-align: left; padding-left: 2em;' |<math>\theta =\, </math> | style='border-style: solid none solid none; text-align: right;' |<math>(-1)^k</math> | style='border-style: solid none solid none; text-align: left;' |<math>\arcsin (y)</math> | style='border-style: solid none solid none;' |<math>+</math> | style='border-style: solid none solid none;' | | style='border-style: solid none solid none; padding-right: 2em;' |<math>\pi k</math> | style="text-align: center; padding-left: 1em; padding-right: 1em;" |for some <math>k \in \Z</math> <!--------------- END: sin ''θ'' = ''x'' ---------------> |- <!--------------- START: csc ''θ'' = ''r'' ---------------> | style="text-align: center; padding: 0.5% 2em 0.5% 2em;" | <math>\csc \theta = r</math> | style="text-align: center;" |<math>\iff</math> | style='border-style: solid none solid none; text-align: left; padding-left: 2em;' |<math>\theta =\, </math> | style='border-style: solid none solid none; text-align: right;' |<math>(-1)^k</math> | style='border-style: solid none solid none; text-align: left;' |<math>\arccsc (r)</math> | style='border-style: solid none solid none;' |<math>+</math> | style='border-style: solid none solid none;' | | style='border-style: solid none solid none; padding-right: 2em;' |<math>\pi k</math> | style="text-align: center; padding-left: 1em; padding-right: 1em;" |for some <math>k \in \Z</math> <!--------------- END: csc ''θ'' = ''r'' ---------------> |- <!--------------- START: cos ''θ'' = ''x'' ---------------> | style="text-align: center; padding: 0.5% 2em 0.5% 2em;" | <math>\cos \theta = x</math> | style="text-align: center;" |<math>\iff</math> | style='border-style: solid none solid none; text-align: left; padding-left: 2em;' |<math>\theta =\, </math> | style='border-style: solid none solid none; text-align: right;' |<math>\pm\,</math> | style='border-style: solid none solid none; text-align: left;' |<math>\arccos(x)</math> | style='border-style: solid none solid none;' |<math>+</math> | style='border-style: solid none solid none;' |<math>2</math> | style='border-style: solid none solid none; padding-right: 2em;' |<math>\pi k</math> | style="text-align: center; padding-left: 1em; padding-right: 1em;" |for some <math>k \in \Z</math> <!--------------- END: cos ''θ'' = ''x'' ---------------> |- <!--------------- START: sec ''θ'' = ''r'' ---------------> | style="text-align: center; padding: 0.5% 2em 0.5% 2em;" | <math>\sec \theta = r</math> | style="text-align: center;" |<math>\iff</math> | style='border-style: solid none solid none; text-align: left; padding-left: 2em;' |<math>\theta =\, </math> | style='border-style: solid none solid none; text-align: right;' |<math>\pm\,</math> | style='border-style: solid none solid none; text-align: left;' |<math>\arcsec (r)</math> | style='border-style: solid none solid none;' |<math>+</math> | style='border-style: solid none solid none;' |<math>2</math> | style='border-style: solid none solid none; padding-right: 2em;' |<math>\pi k</math> | style="text-align: center; padding-left: 1em; padding-right: 1em;" |for some <math>k \in \Z</math> |- <!--------------- END: sec ''θ'' = ''r'' ---------------> |- <!--------------- START: tan ''θ'' = ''s'' ---------------> | style="text-align: center; padding: 0.5% 2em 0.5% 2em;" | <math>\tan \theta = s</math> | style="text-align: center;" |<math>\iff</math> | style='border-style: solid none solid none; text-align: left; padding-left: 2em;' |<math>\theta =\, </math> | style='border-style: solid none solid none; text-align: right;' | | style='border-style: solid none solid none; text-align: left;' |<math>\arctan (s)</math> | style='border-style: solid none solid none;' |<math>+</math> | style='border-style: solid none solid none;' | | style='border-style: solid none solid none; padding-right: 2em;' |<math>\pi k</math> | style="text-align: center; padding-left: 1em; padding-right: 1em;" |for some <math>k \in \Z</math> <!--------------- END: tan ''θ'' = ''s'' ---------------> |- <!--------------- START: cot ''θ'' = ''r'' ---------------> | style="text-align: center; padding: 0.5% 2em 0.5% 2em;" | <math>\cot \theta = r</math> | style="text-align: center;" |<math>\iff</math> | style='border-style: solid none solid none; text-align: left; padding-left: 2em;' |<math>\theta =\, </math> | style='border-style: solid none solid none; text-align: right;' | | style='border-style: solid none solid none; text-align: left;' |<math>\arccot (r)</math> | style='border-style: solid none solid none;' |<math>+</math> | style='border-style: solid none solid none;' | | style='border-style: solid none solid none; padding-right: 2em;' |<math>\pi k</math> | style="text-align: center; padding-left: 1em; padding-right: 1em;" |for some <math>k \in \Z</math> <!--------------- END: cot ''θ'' = ''r'' ---------------> |} where the first four solutions can be written in expanded form as: {| class="wikitable" style="border: none;" |+ |- ! Equation !! [[if and only if]] !! colspan="7" | Solution |- | style="text-align: center; padding: 0.5% 2em 0.5% 2em;" | <math>\sin \theta = y</math> | style="text-align: center;" |[[Logical equality|<math>\iff</math>]] | style='border-style: solid none solid none; text-align: left; padding-left: 2em;' |<math>\theta = \;\;\;\,\arcsin(y)+2 \pi k</math> <br/>{{space|10}}or <br/><math>\theta =-\arcsin(y)+2 \pi k+\pi</math> | style="text-align: center; padding-left: 1em; padding-right: 1em;" |for some <math>k \in \Z</math> <!--------------- END: sin ''θ'' = ''x'' ---------------> |- <!--------------- START: csc ''θ'' = ''r'' ---------------> | style="text-align: center; padding: 0.5% 2em 0.5% 2em;" | <math>\csc \theta = r</math> | style="text-align: center;" |<math>\iff</math> | style='border-style: solid none solid none; text-align: left; padding-left: 2em;' |<math>\theta = \;\;\;\,\arccsc(r)+2 \pi k</math> <br/>{{space|10}}or <br/><math>\theta =-\arccsc(r)+2 \pi k+\pi</math> | style="text-align: center; padding-left: 1em; padding-right: 1em;" |for some <math>k \in \Z</math> <!--------------- END: csc ''θ'' = ''r'' ---------------> |- <!--------------- START: cos ''θ'' = ''x'' ---------------> | style="text-align: center; padding: 0.5% 2em 0.5% 2em;" | <math>\cos \theta = x</math> | style="text-align: center;" |<math>\iff</math> | style='border-style: solid none solid none; text-align: left; padding-left: 2em;' |<math>\theta = \;\;\;\,\arccos(x)+2 \pi k</math> <br/>{{space|9}}or <br/><math>\theta =-\arccos(x)+2 \pi k</math> | style="text-align: center; padding-left: 1em; padding-right: 1em;" |for some <math>k \in \Z</math> <!--------------- END: cos ''θ'' = ''x'' ---------------> |- <!--------------- START: sec ''θ'' = ''r'' ---------------> | style="text-align: center; padding: 0.5% 2em 0.5% 2em;" | <math>\sec \theta = r</math> | style="text-align: center;" |<math>\iff</math> | style='border-style: solid none solid none; text-align: left; padding-left: 2em;' |<math>\theta = \;\;\;\,\arcsec(r)+2 \pi k</math> <br/>{{space|9}}or <br/><math>\theta =-\arcsec(r)+2 \pi k</math> | style="text-align: center; padding-left: 1em; padding-right: 1em;" |for some <math>k \in \Z</math> <!--------------- END: sec ''θ'' = ''r'' ---------------> |} For example, if <math>\cos \theta = -1</math> then <math>\theta = \pi+2 \pi k = -\pi+2 \pi (1+k)</math> for some <math>k \in \Z.</math> While if <math>\sin \theta = \pm 1</math> then <math display="inline">\theta = \frac{\pi}{2}+\pi k =-\frac{\pi}{2}+\pi (k+1)</math> for some <math>k \in \Z,</math> where <math>k</math> will be even if <math>\sin \theta = 1</math> and it will be odd if <math>\sin \theta = -1.</math> The equations <math>\sec \theta = -1</math> and <math>\csc \theta = \pm 1</math> have the same solutions as <math>\cos \theta = -1</math> and <math>\sin \theta = \pm 1,</math> respectively. In all equations above {{em|except}} for those just solved (i.e. except for <math>\sin</math>/<math>\csc \theta = \pm 1</math> and <math>\cos</math>/<math>\sec \theta =-1</math>), the integer <math>k</math> in the solution's formula is uniquely determined by <math>\theta</math> (for fixed <math>r, s, x,</math> and <math>y</math>). With the help of [[Parity (mathematics)|integer parity]] <math display=block>\operatorname{Parity}(h) = \begin{cases} 0 & \text{if } h \text{ is even } \\ 1 & \text{if } h \text{ is odd } \\ \end{cases}</math> it is possible to write a solution to <math>\cos \theta = x</math> that doesn't involve the "plus or minus" <math>\,\pm\,</math> symbol: :<math>cos \; \theta = x \quad</math> if and only if <math>\quad \theta = (-1)^h \arccos(x) + \pi h + \pi \operatorname{Parity}(h) \quad</math> for some <math>h \in \Z.</math> And similarly for the secant function, :<math>sec \; \theta = r \quad</math> if and only if <math>\quad \theta = (-1)^h \arcsec(r) + \pi h + \pi \operatorname{Parity}(h) \quad</math> for some <math>h \in \Z,</math> where <math>\pi h + \pi \operatorname{Parity}(h)</math> equals <math>\pi h</math> when the integer <math>h</math> is even, and equals <math>\pi h + \pi</math> when it's odd. ====Detailed example and explanation of the "plus or minus" symbol {{math|±}} ==== The solutions to <math>\cos \theta = x</math> and <math>\sec \theta = x</math> involve the "plus or minus" symbol <math>\,\pm,\,</math> whose meaning is now clarified. Only the solution to <math>\cos \theta = x</math> will be discussed since the discussion for <math>\sec \theta = x</math> is the same. We are given <math>x</math> between <math>-1 \leq x \leq 1</math> and we know that there is an angle <math>\theta</math> in some interval that satisfies <math>\cos \theta = x.</math> We want to find this <math>\theta.</math> The table above indicates that the solution is <math display="block">\,\theta = \pm \arccos x+2 \pi k\, \quad \text{ for some }k \in \Z</math> which is a shorthand way of saying that (at least) one of the following statement is true: <br /> #<math>\,\theta = \arccos x+2 \pi k\,</math> for some integer <math>k,</math> <br/>or #<math>\,\theta =-\arccos x+2 \pi k\,</math> for some integer <math>k.</math> As mentioned above, if <math>\,\arccos x = \pi\,</math> (which by definition only happens when <math>x = \cos \pi = -1</math>) then both statements (1) and (2) hold, although with different values for the integer <math>k</math>: if <math>K</math> is the integer from statement (1), meaning that <math>\theta = \pi+2 \pi K</math> holds, then the integer <math>k</math> for statement (2) is <math>K+1</math> (because <math>\theta = -\pi+2 \pi (1+K)</math>). However, if <math>x \neq -1</math> then the integer <math>k</math> is unique and completely determined by <math>\theta.</math> If <math>\,\arccos x = 0\,</math> (which by definition only happens when <math>x = \cos 0 = 1</math>) then <math>\,\pm\arccos x = 0\,</math> (because <math>\,+ \arccos x = +0 = 0\,</math> and <math>\,-\arccos x = -0 = 0\,</math> so in both cases <math>\,\pm \arccos x\,</math> is equal to <math>0</math>) and so the statements (1) and (2) happen to be identical in this particular case (and so both hold). Having considered the cases <math>\,\arccos x = 0\,</math> and <math>\,\arccos x = \pi,\,</math> we now focus on the case where <math>\,\arccos x \neq 0\,</math> and <math>\,\arccos x \neq \pi,\,</math> So assume this from now on. The solution to <math>\cos \theta = x</math> is still <math display="block">\,\theta = \pm \arccos x+2 \pi k\, \quad \text{ for some }k \in \Z</math> which as before is shorthand for saying that one of statements (1) and (2) is true. However this time, because <math>\,\arccos x \neq 0\,</math> and <math>\,0 < \arccos x < \pi,\,</math> statements (1) and (2) are different and furthermore, ''exactly one'' of the two equalities holds (not both). Additional information about <math>\theta</math> is needed to determine which one holds. For example, suppose that <math>x = 0</math> and that {{em|all}} that is known about <math>\theta</math> is that <math>\,-\pi \leq \theta \leq \pi\,</math> (and nothing more is known). Then <math display="block">\arccos x = \arccos 0 = \frac{\pi}{2}</math> and moreover, in this particular case <math>k = 0</math> (for both the <math>\,+\,</math> case and the <math>\,-\,</math> case) and so consequently, <math display="block">\theta ~=~ \pm \arccos x+2 \pi k ~=~ \pm \left(\frac{\pi}{2}\right)+2\pi (0) ~=~ \pm \frac{\pi}{2}.</math> This means that <math>\theta</math> could be either <math>\,\pi/2\,</math> or <math>\,-\pi/2.</math> Without additional information it is not possible to determine which of these values <math>\theta</math> has. An example of some additional information that could determine the value of <math>\theta</math> would be knowing that the angle is above the <math>x</math>-axis (in which case <math>\theta = \pi/2</math>) or alternatively, knowing that it is below the <math>x</math>-axis (in which case <math>\theta =-\pi/2</math>). ==== Equal identical trigonometric functions ==== {{EqualOrNegativeIdenticalTrigonometricFunctionsSolutions|includeTableDescription=true|style=}} ;Set of all solutions to elementary trigonometric equations Thus given a single solution <math>\theta</math> to an elementary trigonometric equation (<math>\sin \theta = y</math> is such an equation, for instance, and because <math>\sin (\arcsin y) = y</math> always holds, <math>\theta := \arcsin y</math> is always a solution), the set of all solutions to it are: {| class="wikitable" style="border: none;" |+ |- ! If <math>\theta</math> solves !! then !! colspan="7" | Set of all solutions (in terms of <math>\theta</math>) |- | style="text-align: center; padding: 0.5% 2em 0.5% 2em;" | <math>\;\sin \theta = y</math> | style="text-align: center;" |then | style='border-style: solid none solid none; text-align: left; padding-left: 1em;' |<math>\{\varphi:\sin \varphi=y\} =\, </math> | style='border-style: solid none solid none; text-align: right; padding: 0;' |<math>(\theta</math> | style='border-style: solid none solid none; text-align: left; padding: 0;' |<math>\,+\, 2</math> | style='border-style: solid none solid none; text-align: left; padding: 0;' |<math>\pi \Z)</math> | style='border-style: solid none solid none; text-align: left; padding: 0;' |<math>\,\cup\, (-\theta</math> | style='border-style: solid none solid none; text-align: left; padding: 0;' |<math>-\pi</math> | style='border-style: solid solid solid none; text-align: left; padding-left: 0; padding-right: 2em;' |<math>+ 2 \pi \Z)</math> <!--------------- END: sin ''θ'' = ''x'' ---------------> |- <!--------------- START: csc ''θ'' = ''r'' ---------------> | style="text-align: center; padding: 0.5% 2em 0.5% 2em;" | <math>\;\csc \theta = r</math> | style="text-align: center;" |then | style='border-style: solid none solid none; text-align: left; padding-left: 1em;' |<math>\{\varphi:\csc \varphi=r\} =\, </math> | style='border-style: solid none solid none; text-align: right; padding: 0;' |<math>(\theta</math> | style='border-style: solid none solid none; text-align: left; padding: 0;' |<math>\,+\, 2</math> | style='border-style: solid none solid none; text-align: left; padding: 0;' |<math>\pi \Z)</math> | style='border-style: solid none solid none; text-align: left; padding: 0;' |<math>\,\cup\, (-\theta</math> | style='border-style: solid none solid none; text-align: left; padding: 0;' |<math>-\pi</math> | style='border-style: solid solid solid none; text-align: left; padding-left: 0; padding-right: 2em;' |<math>+ 2 \pi \Z)</math> <!--------------- END: csc ''θ'' = ''r'' ---------------> |- <!--------------- START: cos ''θ'' = ''x'' ---------------> | style="text-align: center; padding: 0.5% 2em 0.5% 2em;" | <math>\;\cos \theta = x</math> | style="text-align: center;" |then | style='border-style: solid none solid none; text-align: left; padding-left: 1em;' |<math>\{\varphi:\cos \varphi=x\} =\, </math> | style='border-style: solid none solid none; text-align: right; padding: 0;' |<math>(\theta</math> | style='border-style: solid none solid none; text-align: left; padding: 0;' |<math>\,+\, 2</math> | style='border-style: solid none solid none; text-align: left; padding: 0;' |<math>\pi \Z)</math> | style='border-style: solid none solid none; text-align: left; padding: 0;' |<math>\,\cup\, (-\theta</math> | style='border-style: solid none solid none; text-align: left; padding: 0;' | | style='border-style: solid solid solid none; text-align: left; padding-left: 0; padding-right: 2em;' |<math>+ 2 \pi \Z)</math> <!--------------- END: cos ''θ'' = ''x'' ---------------> |- <!--------------- START: sec ''θ'' = ''r'' ---------------> | style="text-align: center; padding: 0.5% 2em 0.5% 2em;" | <math>\;\sec \theta = r</math> | style="text-align: center;" |then | style='border-style: solid none solid none; text-align: left; padding-left: 1em;' |<math>\{\varphi:\sec \varphi=r\} =\, </math> | style='border-style: solid none solid none; text-align: right; padding: 0;' |<math>(\theta</math> | style='border-style: solid none solid none; text-align: left; padding: 0;' |<math>\,+\, 2</math> | style='border-style: solid none solid none; text-align: left; padding: 0;' |<math>\pi \Z)</math> | style='border-style: solid none solid none; text-align: left; padding: 0;' |<math>\,\cup\, (-\theta</math> | style='border-style: solid none solid none; text-align: left; padding: 0;' | | style='border-style: solid solid solid none; text-align: left; padding-left: 0; padding-right: 2em;' |<math>+ 2 \pi \Z)</math> |- <!--------------- END: sec ''θ'' = ''r'' ---------------> |- <!--------------- START: tan ''θ'' = ''s'' ---------------> | style="text-align: center; padding: 0.5% 2em 0.5% 2em;" | <math>\;\tan \theta = s</math> | style="text-align: center;" |then | style='border-style: solid none solid none; text-align: left; padding-left: 1em;' |<math>\{\varphi:\tan \varphi=s\} =\, </math> | style='border-style: solid none solid none; text-align: right; padding: 0;' |<math>\theta</math> | style='border-style: solid none solid none; text-align: left; padding: 0;' |<math>\,+\,</math> | style='border-style: solid none solid none; text-align: left; padding: 0;' |<math>\pi \Z</math> | style='border-style: solid none solid none; text-align: left; padding: 0;' | | style='border-style: solid none solid none; text-align: left; padding: 0;' | | style='border-style: solid solid solid none; text-align: left; padding-left: 0; padding-right: 2em;' | <!--------------- END: tan ''θ'' = ''s'' ---------------> |- <!--------------- START: cot ''θ'' = ''r'' ---------------> | style="text-align: center; padding: 0.5% 2em 0.5% 2em;" | <math>\;\cot \theta = r</math> | style="text-align: center;" |then | style='border-style: solid none solid none; text-align: left; padding-left: 1em;' |<math>\{\varphi:\cot \varphi=r\} =\, </math> | style='border-style: solid none solid none; text-align: right; padding: 0;' |<math>\theta</math> | style='border-style: solid none solid none; text-align: left; padding: 0;' |<math>\,+\,</math> | style='border-style: solid none solid none; text-align: left; padding: 0;' |<math>\pi \Z</math> | style='border-style: solid none solid none; text-align: left; padding: 0;' | | style='border-style: solid none solid none; text-align: left; padding: 0;' | | style='border-style: solid solid solid none; text-align: left; padding-left: 0; padding-right: 2em;' | <!--------------- END: cot ''θ'' = ''r'' ---------------> |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)