Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Involute
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== cusp of order 5/2 ==== [[File:Involutes of a cubic curve.svg|thumb|Tangents and involutes of the cubic curve <math>y = x^3</math>. The cusps of order 3/2 are on the cubic curve, while the cusps of order 5/2 are on the x-axis (the tangent line at the inflection point).]] For the second type, consider the curve <math>y = x^3</math>. The arc from <math>x= 0</math> to <math>x = s</math> is of length <math>\int_0^s \sqrt{1 + (3t^2)^2}dt = s + \frac{9}{10} s^5 - \frac 98 s^9 + O(s^{13})</math>, and the tangent at <math>x = s</math> has angle <math>\theta = \arctan(3s^2)</math>. Thus, the involute starting from <math>x= 0</math> at distance <math>L</math> has parametric formula<math display="block">\begin{cases} x(s) = s + (L-s-\frac{9}{10}s^5 + \cdots)\cos\theta \\ y(s) = s^3 + (L-s-\frac{9}{10}s^5 + \cdots)\sin\theta \end{cases}</math>Expand it up to order <math>s^5</math>, we obtain<math display="block">\begin{cases} x(s) = L - \frac 92 L s^4 + (\frac 92 L - \frac{9}{10}) s^5 + O(s^6)\\ y(s) = 3Ls^2 - 2 s^3 + O(s^6) \end{cases}</math>which is a cusp of order 5/2. Explicitly, one may solve for the polynomial expansion satisfied by <math>x, y</math>:<math display="block">\left(x - L + \frac{y^2}{2L} \right)^2 - \left(\frac 92 L + \frac{51}{10} \right)^2 \left(\frac{y}{3L} \right)^5 + O(s^{11}) = 0</math>or <math display="block">x = L - \frac{y^2}{2L} \pm \left(\frac 92 L + \frac{51}{10} \right) \left(\frac{y}{3L} \right)^{2.5} + O(y^{2.75}),\quad \quad y \geq 0 </math>which clearly shows the cusp shape. Setting <math>L=0</math>, we obtain the involute passing the origin. It is special as it contains no cusp. By serial expansion, it has parametric equation<math display="block">\begin{cases} x(s) = \frac{18}{5} s^5 - \frac{126}{5} s^9 + O(s^{13}) \\ y(s) = -2s^3 + \frac{54}{5} s^7 - \frac{318}{5} s^{11} + O(s^{15}) \end{cases}</math>or <math>x = -\frac{18}{5 \cdot 2^{1/3}}y^{5/3} + O(y^3)</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)