Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Jones calculus
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Arbitrarily rotated elements == {{expand section|date=July 2014}} Finding the Jones matrix, J(''α'', ''β'', ''γ''), for an arbitrary rotation involves a three-dimensional [[rotation matrix]]. In the following notation ''α'', ''β'' and ''γ'' are the [[Yaw pitch roll|yaw, pitch, and roll]] angles (rotation about the z-, y-, and x-axes, with x being the direction of propagation), respectively. The full combination of the 3-dimensional rotation matrices is the following: :<math>R_{3D}(\theta)=\begin{bmatrix} \cos\alpha\cos\beta & \cos\alpha\sin\beta\sin\gamma - \sin\alpha\cos\gamma & \cos\alpha\sin\beta\cos\gamma + \sin\alpha\sin\gamma \\ \sin\alpha\cos\beta & \sin\alpha\sin\beta\sin\gamma + \cos\alpha\cos\gamma & \sin\alpha\sin\beta\cos\gamma - \cos\alpha\sin\gamma \\ -\sin\beta & \cos\beta\sin\gamma & \cos\beta\cos\gamma \\ \end{bmatrix}</math> Using the above, for any base Jones matrix J, you can find the rotated state J(''α'', ''β'', ''γ'') using: :<math>J(\alpha,\beta,\gamma) = R_{3D}(-\alpha,-\beta,-\gamma)\cdot J \cdot R_{3D}(\alpha,\beta,\gamma)</math><ref name=spie/> The simplest case, where the Jones matrix is for an ideal linear horizontal polarizer, reduces then to: :<math>J(\alpha, \beta, \gamma) = \begin{bmatrix} c^2_{\alpha} c^2_{\beta} & c_{\alpha} c_{\beta} [c_{\alpha} s_{\beta} s_{\gamma} - s_{\alpha} c_{\gamma}] & c_{\alpha} c_{\beta} [c_{\alpha} s_{\beta} c_{\gamma} + s_{\alpha} s_{\gamma}]\\ s_{\alpha} c_{\alpha} c^2_{\beta} & s_{\alpha} c_{\beta} [c_{\alpha} s_{\beta} s_{\gamma} - s_{\alpha} c_{\gamma}] & s_{\alpha} c_{\beta} [c_{\alpha} s_{\beta} c_{\gamma} + s_{\alpha} s_{\gamma}] \\ -c_{\alpha} s_{\beta} c_{\beta} & -s_{\beta} [c_{\alpha} s_{\beta} s_{\gamma} - s_{\alpha} c_{\gamma}] & -s_{\beta} [c_{\alpha} s_{\beta} c_{\gamma} + s_{\alpha} s_{\gamma}]\\ \end{bmatrix} </math> where c<sub>i</sub> and s<sub>i</sub> represent the cosine or sine of a given angle "i", respectively. See Russell A. Chipman and Garam Yun for further work done based on this.<ref name="Chipman Lam Young 2018 p.">{{cite book | last1=Chipman | first1=R.A. | last2=Lam | first2=W.S.T. | last3=Young | first3=G. | title=Polarized Light and Optical Systems | publisher=CRC Press | series=Optical Sciences and Applications of Light | year=2018 | isbn=978-1-4987-0057-3 | url=https://books.google.com/books?id=saVuDwAAQBAJ | access-date=2023-01-20 | page=}}</ref><ref>{{cite journal |first=Russell A. |last=Chipman |year=1995 |title=Mechanics of polarization ray tracing |journal=Opt. Eng. |volume=34 |issue=6 |pages=1636–1645 |doi=10.1117/12.202061 |bibcode=1995OptEn..34.1636C }}</ref><ref>{{cite journal |title=Three-dimensional polarization ray-tracing calculus I: definition and diattenuation |journal=[[Applied Optics (journal)|Applied Optics]] |first1=Garam |last1=Yun |first2=Karlton |last2=Crabtree |first3=Russell A. |last3=Chipman |volume=50 |issue= 18|pages=2855–2865 |year=2011 |doi=10.1364/AO.50.002855 |pmid=21691348 |bibcode=2011ApOpt..50.2855Y }}</ref><ref>{{cite journal |title=Three-dimensional polarization ray-tracing calculus II: retardance |journal=Applied Optics |first1=Garam |last1=Yun |first2=Stephen C. |last2=McClain |first3=Russell A. |last3=Chipman |volume=50 |issue= 18|pages=2866–2874 |year=2011 |doi=10.1364/AO.50.002866 |pmid=21691349 |bibcode=2011ApOpt..50.2866Y }}</ref><ref>{{cite thesis |hdl=10150/202979 |first=Garam |last=Yun |title=Polarization Ray Tracing |type=PhD thesis |date=2011 |publisher=University of Arizona }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)