Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
L-theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Integers === The '''simply connected ''L''-groups''' are also the ''L''-groups of the integers, as <math>L(e) := L(\mathbf{Z}[e]) = L(\mathbf{Z})</math> for both <math>L</math> = <math>L^*</math> or <math>L_*.</math> For quadratic ''L''-groups, these are the surgery obstructions to [[simply connected]] surgery. The quadratic ''L''-groups of the integers are: :<math>\begin{align} L_{4k}(\mathbf{Z}) &= \mathbf{Z} && \text{signature}/8\\ L_{4k+1}(\mathbf{Z}) &= 0\\ L_{4k+2}(\mathbf{Z}) &= \mathbf{Z}/2 && \text{Arf invariant}\\ L_{4k+3}(\mathbf{Z}) &= 0. \end{align}</math> In [[doubly even]] dimension (4''k''), the quadratic ''L''-groups detect the [[signature (topology)|signature]]; in [[singly even]] dimension (4''k''+2), the ''L''-groups detect the [[Arf invariant]] (topologically the [[Kervaire invariant]]). The symmetric ''L''-groups of the integers are: :<math>\begin{align} L^{4k}(\mathbf{Z}) &= \mathbf{Z} && \text{signature}\\ L^{4k+1}(\mathbf{Z}) &= \mathbf{Z}/2 && \text{de Rham invariant}\\ L^{4k+2}(\mathbf{Z}) &= 0\\ L^{4k+3}(\mathbf{Z}) &= 0. \end{align}</math> In doubly even dimension (4''k''), the symmetric ''L''-groups, as with the quadratic ''L''-groups, detect the signature; in dimension (4''k''+1), the ''L''-groups detect the [[de Rham invariant]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)