Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lagrange's four-square theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Generalizations== Lagrange's four-square theorem is a special case of the [[Fermat polygonal number theorem]] and [[Waring's problem]]. Another possible generalization is the following problem: Given [[natural number]]s <math>a,b,c,d</math>, can we solve <math display="block">n=ax_1^2+bx_2^2+cx_3^2+dx_4^2</math> for all positive integers {{mvar|n}} in integers <math>x_1,x_2,x_3,x_4</math>? The case <math>a=b=c=d=1</math> is answered in the positive by Lagrange's four-square theorem. The general solution was given by [[Ramanujan]].<ref>{{harvnb|Ramanujan|1916}}.</ref> He proved that if we assume, without loss of generality, that <math>a\leq b\leq c\leq d</math> then there are exactly 54 possible choices for <math>a,b,c,d</math> such that the problem is solvable in integers <math>x_1,x_2,x_3,x_4</math> for all {{mvar|n}}. (Ramanujan listed a 55th possibility <math>a=1,b=2,c=5,d=5</math>, but in this case the problem is not solvable if <math>n=15</math>.<ref>{{harvnb|Oh|2000}}.</ref>)
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)