Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lagrange inversion theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Lambert ''W'' function=== {{main|Lambert W function}} The Lambert {{mvar|W}} function is the function <math>W(z)</math> that is implicitly defined by the equation :<math> W(z) e^{W(z)} = z.</math> We may use the theorem to compute the [[Taylor series]] of <math>W(z)</math> at <math>z=0.</math> We take <math>f(w) = we^w</math> and <math>a = 0.</math> Recognizing that :<math>\frac{d^n}{dx^n} e^{\alpha x} = \alpha^n e^{\alpha x},</math> this gives :<math>\begin{align} W(z) &= \sum_{n=1}^{\infty} \left[\lim_{w \to 0} \frac{d^{n-1}}{dw^{n-1}} e^{-nw} \right] \frac{z^n}{n!} \\ {} &= \sum_{n=1}^{\infty} (-n)^{n-1} \frac{z^n}{n!} \\ {} &= z-z^2+\frac{3}{2}z^3-\frac{8}{3}z^4+O(z^5). \end{align}</math> The [[radius of convergence]] of this series is <math>e^{-1}</math> (giving the [[principal branch]] of the Lambert function). A series that converges for <math>|\ln(z)-1|<\sqrt{{4+\pi^2}}</math> (approximately <math>0.0655 < z < 112.63</math>) can also be derived by series inversion. The function <math>f(z) = W(e^z) - 1</math> satisfies the equation :<math>1 + f(z) + \ln (1 + f(z)) = z.</math> Then <math>z + \ln (1 + z)</math> can be expanded into a power series and inverted.<ref>{{cite conference |url=https://dl.acm.org/doi/pdf/10.1145/258726.258783 |title=A sequence of series for the Lambert W function |last1=Corless |first1=Robert M. |last2=Jeffrey |first2= David J.|author-link2=|last3=Knuth|first3=Donald E.|author-link3=Donald E. Knuth|date=July 1997 |book-title=Proceedings of the 1997 international symposium on Symbolic and algebraic computation |pages=197–204|doi=10.1145/258726.258783 |url-access=subscription }}</ref> This gives a series for <math>f(z+1) = W(e^{z+1})-1\text{:}</math> :<math>W(e^{1+z}) = 1 + \frac{z}{2} + \frac{z^2}{16} - \frac{z^3}{192} - \frac{z^4}{3072} + \frac{13 z^5}{61440} - O(z^6).</math> <math>W(x)</math> can be computed by substituting <math>\ln x - 1</math> for {{mvar|z}} in the above series. For example, substituting {{math|β1}} for {{mvar|z}} gives the value of <math>W(1) \approx 0.567143.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)