Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lagrange multiplier
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Modern formulation via differentiable manifolds== The problem of finding the local maxima and minima subject to constraints can be generalized to finding local maxima and minima on a [[differentiable manifold]] <math>\ M ~.</math><ref>{{cite book |last=Lafontaine |first=Jacques |year=2015 |title=An Introduction to Differential Manifolds |publisher=Springer |isbn=978-3-319-20735-3 |page=70 |url=https://books.google.com/books?id=KNhJCgAAQBAJ&pg=PA70}}</ref> In what follows, it is not necessary that <math>M</math> be a Euclidean space, or even a [[Riemannian manifold]]. All appearances of the gradient <math>\ \nabla\ </math> (which depends on a choice of Riemannian metric) can be replaced with the [[exterior derivative]] <math>\ \operatorname{d} ~.</math> ===Single constraint=== Let <math>\ M\ </math> be a [[smooth manifold]] of dimension <math>\ m ~.</math> Suppose that we wish to find the stationary points <math>\ x\ </math> of a smooth function <math>\ f:M \to \mathbb{R}\ </math> when restricted to the submanifold <math>\ N\ </math> defined by <math>\ g(x) = 0\ ,</math> where <math>\ g:M \to \mathbb{R}\ </math> is a smooth function for which {{math|0}} is a [[regular value]]. Let <math>\ \operatorname{d}f\ </math> and <math>\ \operatorname{d}g\ </math> be the [[exterior derivative]]s of <math>\ f\ </math> and <math>\ g\ </math>. Stationarity for the restriction <math>\ f|_{N}\ </math> at <math>\ x\in N\ </math> means <math>\ \operatorname{d}(f|_N)_x=0 ~.</math> Equivalently, the kernel <math>\ \ker(\operatorname{d}f_x)\ </math> contains <math>\ T_x N = \ker(\operatorname{d}g_x) ~.</math> In other words, <math>\ \operatorname{d}f_x\ </math> and <math>\ \operatorname{d}g_x\ </math> are proportional 1-forms. For this it is necessary and sufficient that the following system of <math>\ \tfrac{1}{2}m(m-1)\ </math> equations holds: <math display="block"> \operatorname{d}f_x \wedge \operatorname{d}g_x = 0 \in \Lambda^2(T^{\ast}_x M) </math> where <math>\ \wedge\ </math> denotes the [[exterior algebra|exterior product]]. The stationary points <math>\ x\ </math> are the solutions of the above system of equations plus the constraint <math>\ g(x) = 0 ~.</math> Note that the <math>\ \tfrac{1}{2} m(m-1)\ </math> equations are not independent, since the left-hand side of the equation belongs to the subvariety of <math>\ \Lambda^{2}(T^{\ast}_x M)\ </math> consisting of [[exterior algebra|decomposable elements]]. In this formulation, it is not necessary to explicitly find the Lagrange multiplier, a number <math>\ \lambda\ </math> such that <math>\ \operatorname{d}f_x = \lambda \cdot \operatorname{d}g_x ~.</math> ===Multiple constraints=== Let <math>\ M\ </math> and <math>\ f\ </math> be as in the above section regarding the case of a single constraint. Rather than the function <math>g</math> described there, now consider a smooth function <math>\ G:M\to \R^p (p>1)\ ,</math> with component functions <math>\ g_i: M \to \R\ ,</math> for which <math>0\in\R^p</math> is a [[regular value]]. Let <math>N</math> be the submanifold of <math>\ M\ </math> defined by <math>\ G(x)=0 ~.</math> <math>\ x\ </math> is a stationary point of <math>f|_{N}</math> if and only if <math>\ \ker( \operatorname{d}f_x )\ </math> contains <math>\ \ker( \operatorname{d}G_x ) ~.</math> For convenience let <math>\ L_x = \operatorname{d}f_x\ </math> and <math>\ K_x = \operatorname{d}G_x\ ,</math> where <math>\ \operatorname{d}G</math> denotes the tangent map or Jacobian <math>\ TM \to T\R^p ~</math> (<math>\ T_x\R^p</math> can be canonically identified with <math>\ \R^p</math>). The subspace <math>\ker(K_x)</math> has dimension smaller than that of <math>\ker(L_x)</math>, namely <math>\ \dim(\ker(L_x)) = n-1\ </math> and <math>\ \dim(\ker(K_x)) = n-p ~.</math> <math>\ker(K_x)</math> belongs to <math>\ \ker(L_x)\ </math> if and only if <math>L_x \in T^{\ast}_x M</math> belongs to the image of <math>\ K^{\ast}_x: \R^{p\ast}\to T^{\ast}_x M ~.</math> Computationally speaking, the condition is that <math>L_x</math> belongs to the row space of the matrix of <math>\ K_x\ ,</math> or equivalently the column space of the matrix of <math>K^{\ast}_x</math> (the transpose). If <math>\ \omega_x \in \Lambda^{p}(T^{\ast}_x M)\ </math> denotes the exterior product of the columns of the matrix of <math>\ K^{\ast}_x\ ,</math> the stationary condition for <math>\ f|_{N}\ </math> at <math>\ x\ </math> becomes <math display="block"> L_x \wedge \omega_x = 0 \in \Lambda^{p+1} \left (T^{\ast}_x M \right ) </math> Once again, in this formulation it is not necessary to explicitly find the Lagrange multipliers, the numbers <math>\ \lambda_1, \ldots, \lambda_p\ </math> such that <math display="block">\ \operatorname{d}f_x = \sum_{i=1}^p \lambda_i \operatorname{d}(g_i)_x ~.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)