Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Laguerre polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Recurrence relations === The addition formula for Laguerre polynomials:<ref>{{Cite web |title=DLMF: Β§18.18 Sums β£ Classical Orthogonal Polynomials β£ Chapter 18 Orthogonal Polynomials |url=https://dlmf.nist.gov/18.18 |access-date=2025-03-18 |website=dlmf.nist.gov}}</ref> <math display="block">L^{(\alpha_{1}+\dots+\alpha_{r}+r-1)}_{n}\left(x_{1}+\dots+x_{r}\right)=\sum_{m_{1}+\dots+m_{r}=n}L^{(\alpha_{1})}_{m_{1}}\left(x_{1}\right)\cdots L^{(\alpha_{r})}_{m_{r}}\left(x_{r}\right).</math>Laguerre's polynomials satisfy the recurrence relations <math display="block">L_n^{(\alpha)}(x)= \sum_{i=0}^n L_{n-i}^{(\alpha+i)}(y)\frac{(y-x)^i}{i!},</math> in particular <math display="block">L_n^{(\alpha+1)}(x)= \sum_{i=0}^n L_i^{(\alpha)}(x)</math> and <math display="block">L_n^{(\alpha)}(x)= \sum_{i=0}^n {\alpha-\beta+n-i-1 \choose n-i} L_i^{(\beta)}(x),</math> or <math display="block">L_n^{(\alpha)}(x)=\sum_{i=0}^n {\alpha-\beta+n \choose n-i} L_i^{(\beta- i)}(x);</math> moreover <math display="block">\begin{align} L_n^{(\alpha)}(x)- \sum_{j=0}^{\Delta-1} {n+\alpha \choose n-j} (-1)^j \frac{x^j}{j!}&= (-1)^\Delta\frac{x^\Delta}{(\Delta-1)!} \sum_{i=0}^{n-\Delta} \frac{{n+\alpha \choose n-\Delta-i}}{(n-i){n \choose i}}L_i^{(\alpha+\Delta)}(x)\\[6pt] &=(-1)^\Delta\frac{x^\Delta}{(\Delta-1)!} \sum_{i=0}^{n-\Delta} \frac{{n+\alpha-i-1 \choose n-\Delta-i}}{(n-i){n \choose i}}L_i^{(n+\alpha+\Delta-i)}(x) \end{align}</math> They can be used to derive the four 3-point-rules <math display="block">\begin{align} L_n^{(\alpha)}(x) &= L_n^{(\alpha+1)}(x) - L_{n-1}^{(\alpha+1)}(x) = \sum_{j=0}^k {k \choose j}(-1)^j L_{n-j}^{(\alpha+k)}(x), \\[10pt] n L_n^{(\alpha)}(x) &= (n + \alpha )L_{n-1}^{(\alpha)}(x) - x L_{n-1}^{(\alpha+1)}(x), \\[10pt] & \text{or } \\ \frac{x^k}{k!}L_n^{(\alpha)}(x) &= \sum_{i=0}^k (-1)^i {n+i \choose i} {n+\alpha \choose k-i} L_{n+i}^{(\alpha-k)}(x), \\[10pt] n L_n^{(\alpha+1)}(x) &= (n-x) L_{n-1}^{(\alpha+1)}(x) + (n+\alpha)L_{n-1}^{(\alpha)}(x) \\[10pt] x L_n^{(\alpha+1)}(x) &= (n+\alpha)L_{n-1}^{(\alpha)}(x)-(n-x)L_n^{(\alpha)}(x); \end{align}</math> combined they give this additional, useful recurrence relations<math display="block">\begin{align} L_n^{(\alpha)}(x)&= \left(2+\frac{\alpha-1-x}n \right)L_{n-1}^{(\alpha)}(x)- \left(1+\frac{\alpha-1}n \right)L_{n-2}^{(\alpha)}(x)\\[10pt] &= \frac{\alpha+1-x}n L_{n-1}^{(\alpha+1)}(x)- \frac x n L_{n-2}^{(\alpha+2)}(x) \end{align}</math> Since <math>L_n^{(\alpha)}(x)</math> is a monic polynomial of degree <math>n</math> in <math>\alpha</math>, there is the [[partial fraction decomposition]] <math display="block">\begin{align} \frac{n!\,L_n^{(\alpha)}(x)}{(\alpha+1)_n} &= 1- \sum_{j=1}^n (-1)^j \frac{j}{\alpha + j} {n \choose j}L_n^{(-j)}(x) \\ &= 1- \sum_{j=1}^n \frac{x^j}{\alpha + j}\,\,\frac{L_{n-j}^{(j)}(x)}{(j-1)!} \\ &= 1-x \sum_{i=1}^n \frac{L_{n-i}^{(-\alpha)}(x) L_{i-1}^{(\alpha+1)}(-x)}{\alpha +i}. \end{align}</math> The second equality follows by the following identity, valid for integer ''i'' and {{mvar|n}} and immediate from the expression of <math>L_n^{(\alpha)}(x)</math> in terms of [[Charlier polynomials]]: <math display="block"> \frac{(-x)^i}{i!} L_n^{(i-n)}(x) = \frac{(-x)^n}{n!} L_i^{(n-i)}(x).</math> For the third equality apply the fourth and fifth identities of this section.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)