Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Large eddy simulation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Compressible governing equations === For the governing equations of compressible flow, each equation, starting with the conservation of mass, is filtered. This gives: :<math> \frac{\partial \overline{\rho}}{\partial t} + \frac{ \partial \overline{u_i \rho} }{\partial x_i} = 0 </math> which results in an additional sub-filter term. However, it is desirable to avoid having to model the sub-filter scales of the mass conservation equation. For this reason, Favre<ref name="Favre_1983">{{cite journal |author=Favre, Alexandre |title=Turbulence: space-time statistical properties and behavior in supersonic flows |year=1983 |journal=Physics of Fluids A |volume=23 |issue=10 |pages=2851β2863 |doi=10.1063/1.864049|bibcode = 1983PhFl...26.2851F }}</ref> proposed a density-weighted filtering operation, called Favre filtering, defined for an arbitrary quantity <math>\phi</math> as: :<math> \tilde{\phi} = \frac{ \overline{\rho \phi} }{ \overline{\rho} } </math> which, in the limit of incompressibility, becomes the normal filtering operation. This makes the conservation of mass equation: :<math> \frac{\partial \overline{\rho}}{\partial t} + \frac{ \partial \overline{\rho} \tilde{u_i} }{ \partial x_i } = 0. </math> This concept can then be extended to write the Favre-filtered momentum equation for compressible flow. Following Vreman:<ref name="Vreman_1995">{{cite journal |author1=Vreman, Bert |author2=Geurts, Bernard |author3=Kuerten, Hans |journal=[[Applied Scientific Research]] |year=1995 |volume=45 |issue=3 |doi=10.1007/BF00849116 |title=Subgrid-modelling in LES of compressible flow |pages=191β203|bibcode=1995FTC....54..191V |url=https://research.utwente.nl/en/publications/subgridmodelling-in-les-of-compressible-flow(7c54958d-ebdd-4422-bf9d-c17052984a68).html }}</ref> :<math> \frac{ \partial \overline{\rho} \tilde{u_i} }{ \partial t } + \frac{ \partial \overline{\rho} \tilde{u_i} \tilde{u_j} }{ \partial x_j } + \frac{ \partial \overline{p} }{ \partial x_i } - \frac{ \partial \tilde{\sigma}_{ij} }{ \partial x_j } = - \frac{ \partial \overline{\rho} \tau_{ij}^{r} }{ \partial x_j } + \frac{ \partial }{ \partial x_j } \left( \overline{\sigma}_{ij} - \tilde{\sigma}_{ij} \right) </math> where <math>\sigma_{ij}</math> is the [[shear stress]] tensor, given for a Newtonian fluid by: :<math> \sigma_{ij} = 2 \mu(T) S_{ij} - \frac{2}{3} \mu(T) \delta_{ij} S_{kk} </math> and the term <math>\frac{ \partial }{\partial x_j} \left( \overline{\sigma}_{ij} - \tilde{\sigma}_{ij} \right)</math> represents a sub-filter viscous contribution from evaluating the viscosity <math>\mu(T)</math> using the Favre-filtered temperature <math>\tilde{T}</math>. The subgrid stress tensor for the Favre-filtered momentum field is given by :<math> \tau_{ij}^{r} = \widetilde{ u_i \cdot u_j } - \tilde{u_i} \tilde{u_j} </math> By analogy, the Leonard decomposition may also be written for the residual stress tensor for a filtered triple product <math>\overline{\rho \phi \psi}</math>. The triple product can be rewritten using the Favre filtering operator as <math>\overline{\rho} \widetilde{\phi \psi}</math>, which is an unclosed term (it requires knowledge of the fields <math>\phi</math> and <math>\psi</math>, when only the fields <math>\tilde{\phi}</math> and <math>\tilde{\psi}</math> are known). It can be broken up in a manner analogous to <math>\overline{u_i u_j}</math> above, which results in a sub-filter stress tensor <math>\overline{\rho} \left( \widetilde{\phi \psi} - \tilde{\phi} \tilde{\psi} \right)</math>. This sub-filter term can be split up into contributions from three types of interactions: the Leondard tensor <math>L_{ij}</math>, representing interactions among resolved scales; the Clark tensor <math>C_{ij}</math>, representing interactions between resolved and unresolved scales; and the Reynolds tensor <math>R_{ij}</math>, which represents interactions among unresolved scales.<ref name="Sagaut_2009">{{cite book |author1=Garnier, E. |author2=Adams, N. |author3=Sagaut, P. |title=Large eddy simulation for compressible flows |year=2009 |publisher=Springer |isbn=978-90-481-2818-1 |doi=10.1007/978-90-481-2819-8|url=https://cds.cern.ch/record/1339029 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)