Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Legendre polynomials
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Rodrigues' formula and other explicit formulas === An especially compact expression for the Legendre polynomials is given by [[Rodrigues' formula]]: <math display="block">P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 -1)^n \,.</math> This formula enables derivation of a large number of properties of the <math>P_n</math>'s. Among these are explicit representations such as <math display="block">\begin{align} P_n(x) & = [t^n] \frac{\left((t+x)^2 - 1\right)^n}{2^n} = [t^n] \frac{\left(t+x+1\right)^n \left(t+x-1\right)^n}{2^n}, \\[1ex] P_n(x)&= \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k}^{\!2} (x-1)^{n-k}(x+1)^k, \\[1ex] P_n(x)&= \sum_{k=0}^n \binom{n}{k} \binom{n+k}{k} \left( \frac{x-1}{2} \right)^{\!k}, \\[1ex] P_n(x)&= \frac{1}{2^n}\sum_{k=0}^{\left\lfloor n/2 \right\rfloor} \left(-1\right)^k \binom{n}{k}\binom{2n-2k}n x^{n-2k},\\[1ex] P_n(x)&= 2^n \sum_{k=0}^n x^k \binom{n}{k} \binom{\frac{n+k-1}{2}}{n}, \\[1ex] P_n(x)&=\frac{1}{2^n n!}\sum_{k=\lceil n/2 \rceil}^{n}\frac{(-1)^{k+n}(2k)!}{(2k-n)!(n-k)!k!}x^{2k-n}, \\[1ex] P_n(x)&= \begin{cases} \displaystyle\frac{1}{\pi}\int_0^\pi {\left(x+\sqrt{x^2-1}\cdot\cos (t) \right)}^n\,dt & \text{if } |x|>1, \\ x^n & \text{if } |x|=1, \\ \displaystyle\frac{2}{\pi}\cdot x^n\cdot |x|\cdot \int_{|x|}^1 \frac{t^{-n-1}}{\sqrt{t^2-x^2}}\cdot \frac{\cos\left(n\cdot \arccos(t)\right)}{\sin\left(\arccos(t)\right)}\,dt & \text{if } 0<|x|<1, \\ \displaystyle(-1)^{n/2}\cdot2^{-n}\cdot \binom{n}{n/2} & \text{if } x=0 \text{ and }n\text{ even}, \\ 0 & \text{if } x=0 \text{ and }n\text{ odd}. \end{cases} \end{align}</math> Expressing the polynomial as a power series, <math display="inline">P_n(x) = \sum a_{n,k} x^k </math>, the coefficients of powers of <math>x</math> can also be calculated using the recurrences <math display="block">a_{n,k} = - \frac{(n-k+2)(n+k-1)}{k(k-1)}a_{n,k-2}. </math> or <math> a_{n,k}=-\frac{n+k-1}{n-k}a_{n-2,k}. </math> The Legendre polynomial is determined by the values used for the two constants <math display="inline">a_{n,0}</math> and <math display="inline">a_{n,1} </math>, where <math display="inline">a_{n,0}=0 </math> if <math>n</math> is odd and <math display="inline">a_{n,1}=0 </math> if <math>n</math> is even.<ref>{{Cite book |last=Boas |first=Mary L. |title=Mathematical methods in the physical sciences |date=2006 |publisher=Wiley |isbn=978-0-471-19826-0 |edition=3rd |location=Hoboken, NJ}}</ref> In the fourth representation, <math>\lfloor n/2 \rfloor</math> stands for the [[floor function|largest integer less than or equal to]] <math>n/2</math>. The last representation, which is also immediate from the recursion formula, expresses the Legendre polynomials by simple monomials and involves the [[Binomial coefficient#Generalization and connection to the binomial series|generalized form of the binomial coefficient]]. The reversal of the representation as a power series is <ref>{{cite book|first1=Wilhelm|last1=Magnus|first2=Fritz|last2=Oberhettinger|year=1943|title=Formeln und Satze fur die speziellen Funktionen der Mathematischen Physik|publisher=Springer|series=Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen|volume=52|isbn=978-3-662-41656-3|oclc=1026897547|mr=0022272}}</ref><ref>{{cite book|first1=I. S.|last1=Gradshteyn|first2=I. M.|last2=Ryzhik|year=2015|title=Table of Integrals, Series, and Products|publisher=Elsevier|isbn=978-0-12-384933-5|mr=3307944}}</ref> <math> x^m =\sum_{s= 0}^{\lfloor m/2\rfloor} (2m-4s+1) \frac{(2s+2)(2s+4)\cdots 2\lfloor m/2\rfloor}{(2m-2s+1)(2m-2s-1)(2m-2s-3)\cdots (1+2\lfloor (m+1)/2\rfloor)}P_{m-2s}(x). </math> for <math>m=0,1,2,\ldots</math>, where an empty product in the numerator (last factor less than the first factor) evaluates to 1. The first few Legendre polynomials are: {| class="wikitable" style="text-align: right;" ! <math>n</math> !! <math>P_n(x)</math> |- |0 || <math display="inline">1</math> |- |1 || <math display="inline">x</math> |- |2 || <math display="inline">\tfrac12 \left(3x^2-1\right)</math> |- |3 || <math display="inline">\tfrac12 \left(5x^3-3x\right)</math> |- |4 || <math display="inline">\tfrac18 \left(35x^4-30x^2+3\right)</math> |- |5 || <math display="inline">\tfrac18 \left(63x^5-70x^3+15x\right)</math> |- |6 || <math display="inline">\tfrac1{16} \left(231x^6-315x^4+105x^2-5\right)</math> |- |7 || <math display="inline">\tfrac1{16} \left(429x^7-693x^5+315x^3-35x\right)</math> |- |8 || <math display="inline">\tfrac1{128} \left(6435x^8-12012x^6+6930x^4-1260x^2+35\right)</math> |- |9 || <math display="inline">\tfrac1{128} \left(12155x^9-25740x^7+18018x^5-4620x^3+315x\right)</math> |- |10 || <math display="inline">\tfrac1{256} \left(46189x^{10}-109395x^8+90090x^6-30030x^4+3465x^2-63\right)</math> |} The graphs of these polynomials (up to {{math|1=''n'' = 5}}) are shown below: [[File:Legendrepolynomials6.svg|640px|none|Plot of the six first Legendre polynomials.]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)