Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Linear elasticity
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Spherical coordinate form === In spherical coordinates (<math>r,\theta,\phi</math>) the equations of motion are<ref name="Slau" /> <math display="block">\begin{align} & \frac{\partial \sigma_{rr}}{\partial r} + \cfrac{1}{r}\frac{\partial \sigma_{r\theta}}{\partial \theta} + \cfrac{1}{r\sin\theta}\frac{\partial \sigma_{r\phi}}{\partial \phi} + \cfrac{1}{r} (2\sigma_{rr}-\sigma_{\theta\theta}-\sigma_{\phi\phi}+\sigma_{r\theta}\cot\theta) + F_r = \rho~\frac{\partial^2 u_r}{\partial t^2} \\ & \frac{\partial \sigma_{r\theta}}{\partial r} + \cfrac{1}{r}\frac{\partial \sigma_{\theta\theta}}{\partial \theta} + \cfrac{1}{r\sin\theta}\frac{\partial \sigma_{\theta \phi}}{\partial \phi} + \cfrac{1}{r}[(\sigma_{\theta\theta}-\sigma_{\phi\phi})\cot\theta + 3\sigma_{r\theta}] + F_\theta = \rho~\frac{\partial^2 u_\theta}{\partial t^2} \\ & \frac{\partial \sigma_{r\phi}}{\partial r} + \cfrac{1}{r}\frac{\partial \sigma_{\theta \phi}}{\partial \theta} + \cfrac{1}{r\sin\theta}\frac{\partial \sigma_{\phi\phi}}{\partial \phi} + \cfrac{1}{r}(2\sigma_{\theta\phi}\cot\theta+3\sigma_{r\phi}) + F_\phi = \rho~\frac{\partial^2 u_\phi}{\partial t^2} \end{align}</math> [[File:3D Spherical.svg|thumb|240px|right|Spherical coordinates (''r'', '' ΞΈ'', ''Ο'') as commonly used in ''physics'': radial distance ''r'', polar angle ''ΞΈ'' ([[theta]]), and azimuthal angle ''Ο'' ([[phi]]). The symbol ''Ο'' ([[rho]]) is often used instead of ''r''.]] The strain tensor in spherical coordinates is <math display="block">\begin{align} \varepsilon_{rr} & = \frac{\partial u_r}{\partial r}\\ \varepsilon_{\theta\theta}& = \frac{1}{r} \left(\frac{\partial u_\theta}{\partial \theta} + u_r\right)\\ \varepsilon_{\phi\phi} & = \frac{1}{r\sin\theta} \left(\frac{\partial u_\phi}{\partial \phi} + u_r\sin\theta + u_\theta\cos\theta\right)\\ \varepsilon_{r\theta} & = \frac{1}{2} \left(\frac{1}{r} \frac{\partial u_r}{\partial \theta} + \frac{\partial u_\theta}{\partial r} - \frac{u_\theta}{r}\right) \\ \varepsilon_{\theta \phi} & = \frac{1}{2r} \left[\frac{1}{\sin\theta}\frac{\partial u_\theta}{\partial \phi} +\left(\frac{\partial u_\phi}{\partial \theta} - u_\phi \cot\theta\right)\right]\\ \varepsilon_{r \phi} & = \frac{1}{2} \left(\frac{1}{r \sin \theta} \frac{\partial u_r}{\partial \phi} + \frac{\partial u_\phi}{\partial r} - \frac{u_\phi}{r}\right). \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)