Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Linear logic
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Additives=== The rules for additive conjunction (&) and disjunction (β) : {| style="margin:auto" |- | style="text-align: center;" | {| border="0" |- | {{math|{{tee}} Ξ, <VAR>A</VAR>}} || || || {{math|{{tee}} Ξ, <VAR>B</VAR>}} |- | colspan=4 style="border-top:2px solid black;" | |- | colspan=4 align="center" | {{math|{{tee}} Ξ, <VAR>A</VAR> & <VAR>B</VAR>}} |} | width="50" | | style="text-align: center;" | {| border="0" |- | {{math|{{tee}} Ξ, <VAR>A</VAR>}} |- | style="border-top:2px solid black;" | |- | {{math|{{tee}} Ξ, <VAR>A</VAR> β <VAR>B</VAR>}} |} | width="25" | | style="text-align: center;" | {| border="0" |- | {{math|{{tee}} Ξ, <VAR>B</VAR>}} |- | style="border-top:2px solid black;" | |- | {{math|{{tee}} Ξ, <VAR>A</VAR> β <VAR>B</VAR>}} |} |} and for their units: {| style="margin:auto" |- | style="text-align: center;" | {| border="0" |- | |- | colspan=4 style="border-top:2px solid black;" | |- | colspan=4 align="center" | {{math|{{tee}} Ξ, β€}} |} | width="50" | | style="text-align: center;" | (no rule for {{math|0}}) |} Observe that the rules for additive conjunction and disjunction are again admissible under a classical interpretation. But now we can explain the basis for the multiplicative/additive distinction in the rules for the two different versions of conjunction: for the multiplicative connective (β), the context of the conclusion ({{math|Ξ, Ξ}}) is split up between the premises, whereas for the additive case connective (&) the context of the conclusion ({{math|Ξ}}) is carried whole into both premises.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)