Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Linear programming
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Augmented form (slack form) == Linear programming problems can be converted into an ''augmented form'' in order to apply the common form of the [[simplex algorithm]]. This form introduces non-negative ''[[slack variable]]s'' to replace inequalities with equalities in the constraints. The problems can then be written in the following [[block matrix]] form: : Maximize <math>z</math>: : <math> \begin{bmatrix} 1 & -\mathbf{c}^\mathsf{T} & 0 \\ 0 & \mathbf{A} & \mathbf{I} \end{bmatrix} \begin{bmatrix} z \\ \mathbf{x} \\ \mathbf{s} \end{bmatrix} = \begin{bmatrix} 0 \\ \mathbf{b} \end{bmatrix} </math> :<math>\mathbf{x} \ge 0, \mathbf{s} \ge 0</math> where <math>\mathbf{s}</math> are the newly introduced slack variables, <math>\mathbf{x}</math> are the decision variables, and <math>z</math> is the variable to be maximized. === Example === The example above is converted into the following augmented form: :{| |- | colspan="2" | Maximize: <math>S_1\cdot x_1+S_2\cdot x_2</math> | (objective function) |- | subject to: | <math>x_1 + x_2 + x_3 = L</math> | (augmented constraint) |- | | <math>F_1\cdot x_1+F_2\cdot x_2 + x_4 = F</math> | (augmented constraint) |- | | <math>P_1\cdot x_1 + P_2\cdot x_2 + x_5 = P</math> | (augmented constraint) |- | | <math>x_1,x_2,x_3,x_4,x_5 \ge 0.</math> |} where <math>x_3, x_4, x_5</math> are (non-negative) slack variables, representing in this example the unused area, the amount of unused fertilizer, and the amount of unused pesticide. In matrix form this becomes: : Maximize <math>z</math>: : <math display=block> \begin{bmatrix} 1 & -S_1 & -S_2 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & F_1 & F_2 & 0 & 1 & 0 \\ 0 & P_1 & P_2 & 0 & 0 & 1 \\ \end{bmatrix} \begin{bmatrix} z \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ L \\ F \\ P \end{bmatrix}, \, \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} \ge 0. </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)