Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Localization (commutative algebra)
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Universal property === The (above defined) ring homomorphism <math>j\colon R\to S^{-1}R</math> satisfies a [[universal property]] that is described below. This characterizes <math>S^{-1}R</math> up to an [[ring isomorphism|isomorphism]]. So all properties of localizations can be deduced from the universal property, independently from the way they have been constructed. Moreover, many important properties of localization are easily deduced from the general properties of universal properties, while their direct proof may be more technical. The universal property satisfied by <math>j\colon R\to S^{-1}R</math> is the following: :If <math>f\colon R\to T</math> is a ring homomorphism that maps every element of {{mvar|S}} to a [[unit (ring theory)|unit]] (invertible element) in {{mvar|T}}, there exists a unique ring homomorphism <math>g\colon S^{-1}R\to T</math> such that <math>f=g\circ j.</math> Using [[category theory]], this can be expressed by saying that localization is a [[functor]] that is [[left adjoint]] to a [[forgetful functor]]. More precisely, let <math>\mathcal C</math> and <math>\mathcal D</math> be the categories whose objects are [[ordered pair|pairs]] of a commutative ring and a [[submonoid]] of, respectively, the multiplicative [[monoid]] or the [[group of units]] of the ring. The [[morphism]]s of these categories are the ring homomorphisms that map the submonoid of the first object into the submonoid of the second one. Finally, let <math>\mathcal F\colon \mathcal D \to \mathcal C</math> be the forgetful functor that forgets that the elements of the second element of the pair are invertible. Then the factorization <math>f=g\circ j</math> of the universal property defines a bijection :<math>\hom_\mathcal C((R,S), \mathcal F(T,U))\to \hom_\mathcal D ((S^{-1}R, j(S)), (T,U)).</math> This may seem a rather tricky way of expressing the universal property, but it is useful for showing easily many properties, by using the fact that the composition of two left adjoint functors is a left adjoint functor.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)