Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Logarithmic form
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Historical terminology== In the 19th-century theory of [[elliptic function]]s, 1-forms with logarithmic poles were sometimes called ''integrals of the second kind'' (and, with an unfortunate inconsistency, sometimes ''differentials of the third kind''). For example, the [[Weierstrass zeta function]] associated to a [[lattice (group)|lattice]] <math>\Lambda</math> in '''C''' was called an "integral of the second kind" to mean that it could be written :<math>\zeta(z)=\frac{\sigma'(z)}{\sigma(z)}.</math> In modern terms, it follows that <math>\zeta(z)dz=d\sigma/\sigma</math> is a 1-form on '''C''' with logarithmic poles on <math>\Lambda</math>, since <math>\Lambda</math> is the zero set of the Weierstrass sigma function <math>\sigma(z).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)