Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Logarithmic integral function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Asymptotic expansion == The asymptotic behavior for <math>x\to\infty</math> is : <math> \operatorname{li}(x) = O \left( \frac{x }{\ln x} \right) . </math> where <math>O</math> is the [[big O notation]]. The full [[asymptotic expansion]] is : <math> \operatorname{li}(x) \sim \frac{x}{\ln x} \sum_{k=0}^\infty \frac{k!}{(\ln x)^k} </math> or : <math> \frac{\operatorname{li}(x)}{x/\ln x} \sim 1 + \frac{1}{\ln x} + \frac{2}{(\ln x)^2} + \frac{6}{(\ln x)^3} + \cdots. </math> This gives the following more accurate asymptotic behaviour: : <math> \operatorname{li}(x) - \frac{x}{ \ln x} = O \left( \frac{x}{(\ln x)^2} \right) . </math> As an asymptotic expansion, this series is [[divergent series|not convergent]]: it is a reasonable approximation only if the series is truncated at a finite number of terms, and only large values of ''x'' are employed. This expansion follows directly from the asymptotic expansion for the [[exponential integral]]. This implies e.g. that we can bracket li as: : <math> 1+\frac{1}{\ln x} < \operatorname{li}(x) \frac{\ln x}{x} < 1+\frac{1}{\ln x}+\frac{3}{(\ln x)^2} </math> for all <math>\ln x \ge 11</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)