Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Logical disjunction
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Defined by other operators=== In [[classical logic]] systems where logical disjunction is not a primitive, it can be defined in terms of the primitive ''[[logical conjunction|and]]'' (<math>\land</math>) and ''[[logical negation|not]]'' (<math>\lnot</math>) as: :<math>A \lor B = \neg ((\neg A) \land (\neg B))</math>. Alternatively, it may be defined in terms of ''[[material conditional|implies]]'' (<math>\to</math>) and ''not'' as:<ref>{{cite book |last=Walicki |first=Michaล |author-link= |date=2016 |title=Introduction to Mathematical Logic |url=https://www.worldscientific.com/doi/abs/10.1142/9783 |publisher=WORLD SCIENTIFIC |page=150 |doi=10.1142/9783 |isbn=978-9814343879 }}</ref> :<math>A \lor B = (\lnot A) \to B</math>. The latter can be checked by the following truth table: {{2-ary truth table |1|1|0|0|<math>\neg A</math> |thick |0|1|1|1|<math>\neg A \rightarrow B</math> | |0|1|1|1|<math>A \or B</math> }} It may also be defined solely in terms of <math>\to</math>: :<math>A \lor B = (A \to B) \to B</math>. It can be checked by the following truth table: {{2-ary truth table |1|1|0|1|<math>A \rightarrow B</math> |thick |0|1|1|1|<math>(A \rightarrow B) \rightarrow B</math> | |0|1|1|1|<math>A \or B</math> }} <!-- === Proof theory === -->
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)