Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lorentz force
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Continuous charge distribution === [[File:Lorentz force continuum.svg|thumb|Lorentz force (per unit 3-volume) {{math|'''f'''}} on a continuous [[charge distribution]] ([[charge density]] {{math|''ρ''}}) in motion. The 3-[[current density]] {{math|'''J'''}} corresponds to the motion of the charge element {{math|''dq''}} in [[volume element]] {{math|''dV''}} and varies throughout the continuum.]] For a continuous [[charge distribution]] in motion, the Lorentz force equation becomes: <math display="block">\mathrm{d}\mathbf{F} = \mathrm{d}q\left(\mathbf{E} + \mathbf{v} \times \mathbf{B}\right)</math> where <math>\mathrm{d}\mathbf{F}</math> is the force on a small piece of the charge distribution with charge <math>\mathrm{d}q</math>. If both sides of this equation are divided by the volume of this small piece of the charge distribution <math>\mathrm{d}V</math>, the result is: <math display="block">\mathbf{f} = \rho\left(\mathbf{E} + \mathbf{v} \times \mathbf{B}\right)</math> where <math>\mathbf{f}</math> is the ''force density'' (force per unit volume) and <math>\rho</math> is the [[charge density]] (charge per unit volume). Next, the [[current density]] corresponding to the motion of the charge continuum is{{sfn|Griffiths|2023|p=219}} <math display="block">\mathbf{J} = \rho \mathbf{v} </math> so the continuous analogue to the equation is{{sfn|Griffiths|2023|p=368}} {{Equation box 1 |indent =: |equation = <math>\mathbf{f} = \rho \mathbf{E} + \mathbf{J} \times \mathbf{B}</math> |cellpadding= 6 |border |border colour = #0073CF |background colour=#F5FFFA}} The total force is the [[volume integral]] over the charge distribution: <math display="block"> \mathbf{F} = \int \left ( \rho \mathbf{E} + \mathbf{J} \times \mathbf{B} \right)\mathrm{d}V.</math> By eliminating <math>\rho</math> and <math>\mathbf{J}</math>, using [[Maxwell's equations]], and manipulating using the theorems of [[vector calculus]], this form of the equation can be used to derive the [[Maxwell stress tensor]] <math>\boldsymbol{\sigma}</math>, in turn this can be combined with the [[Poynting vector]] <math>\mathbf{S}</math> to obtain the [[electromagnetic stress–energy tensor]] {{math|'''T'''}} used in [[general relativity]].{{sfn|Griffiths|2023|pp=369-370}} In terms of <math>\boldsymbol{\sigma}</math> and <math>\mathbf{S}</math>, another way to write the Lorentz force (per unit volume) is <math display="block"> \mathbf{f} = \nabla\cdot\boldsymbol{\sigma} - \dfrac{1}{c^2} \dfrac{\partial \mathbf{S}}{\partial t} </math> where <math>\nabla \cdot</math> denotes the [[Divergence#Definition_in_coordinates|divergence]] of the [[tensor field]] and <math>c</math> is the [[speed of light]]. Rather than the amount of charge and its velocity in electric and magnetic fields, this equation relates the [[energy flux]] (flow of ''energy'' per unit time per unit distance) in the fields to the force exerted on a charge distribution. See [[Covariant formulation of classical electromagnetism#Charge continuum|Covariant formulation of classical electromagnetism]] for more details. The density of power associated with the Lorentz force in a material medium is <math display="block">\mathbf{J} \cdot \mathbf{E}.</math> If we separate the total charge and total current into their free and bound parts, we get that the density of the Lorentz force is <math display="block">\mathbf{f} = \left(\rho_f - \nabla \cdot \mathbf P\right) \mathbf{E} + \left(\mathbf{J}_f + \nabla\times\mathbf{M} + \frac{\partial\mathbf{P}}{\partial t}\right) \times \mathbf{B}.</math> where: <math>\rho_f</math> is the density of free charge; <math>\mathbf{P}</math> is the [[polarization density]]; <math>\mathbf{J}_f</math> is the density of free current; and <math>\mathbf{M}</math> is the [[magnetization]] density. In this way, the Lorentz force can explain the torque applied to a permanent magnet by the magnetic field. The density of the associated power is <math display="block">\left(\mathbf{J}_f + \nabla\times\mathbf{M} + \frac{\partial\mathbf{P}}{\partial t}\right) \cdot \mathbf{E}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)